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s u m m a r y

This study develops a scale-dependent synthetic data generation method for streamflow by using a con-
tinuous wavelet transform. The detailed information of streamflow variability across different timescales
embedded in the data is obtained from the continuous wavelet transform. To take into account the time-
dependent flow magnitudes, the wavelet coefficients are simply separated into two basic categories,
namely high-flow part and low-flow part. The data reconstruction is based on the random permutation
of the separated wavelet coefficients for the two categories. The synthetic generation is performed at
both the individual timescales and the multiple timescales. The Morlet wavelet transform is considered
as a representative continuous wavelet transform, and generation of daily streamflow data is attempted.
The method is applied to a streamflow series observed in the Pearl River basin in South China. The results
indicate that the proposed method: (1) is suitable for scale-controlled generation of streamflow time ser-
ies and (2) provides reliable information as to the extent of spectral properties present in the original data
that need to be preserved.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In hydrology, synthetic data generation is an important step for
providing a basis for undertaking a variety of water-related design,
operation, and diagnostic studies. The basic characteristics of
hydrologic time series can be described in terms of, for example,
(1) asymmetric and marginal probability distributions; (2) persis-
tent large amplitude variations at irregular time intervals and fre-
quency-dependent amplitude variations; (3) long memory,
nonlinear dependence, and time irreversibility; and (4) nonlinear
dynamic and chaotic properties (see, for example, Salas et al.,
1980; Jayawardena and Lai, 1994; Lall and Sharma, 1996; Smith
et al., 1998; Sivakumar et al., 2001; Whitcher et al., 2002). The syn-
thetic generation of hydrologic time series (e.g. rainfall, stream-
flow) can be achieved by employing any of the following models:
shot noise model (Weiss, 1977), fragments model (Srikanthan
and McMahon, 1980), autoregressive moving average model
(Box et al., 1994), artificial neural networks (ANNs) (Raman and
Sunilkumar, 1995), stochastic disaggregation model (Valencia
and Schaake, 1973; Tarboton et al., 1998; Acharya and Ryu, in
press), Markov chain model (Aksoy, 2003), bootstrapping method

(Lall and Sharma, 1996; Srinivas and Srinivasan, 2005), and wave-
lets (Bayazit and Aksoy, 2001), among others.

Hydrologic data, and data in earth sciences at large, are often
nonstationary. Since traditional Fourier transform methods do
not contain any information on the time dependence of the associ-
ated signal, they cannot provide any local information regarding
the time evolution of its spectral characteristics (Lau and Weng,
1995). Wavelet transforms enable us to obtain expansions of a sig-
nal using the time–frequency atoms, called wavelets, that have
good properties of localization in both time and frequency (time-
scale) domains (Foufoula-Georgiou and Kumar, 1994; Kumar and
Foufoula-Georgiou, 1997). The localized fluctuations that are
inherently present in the nonstationary processes can be effec-
tively reflected by wavelet analysis. The wavelets generally refer
to either orthogonal or nonorthogonal wavelet functions (Torrence
and Compo, 1998). The discrete wavelet transform is applied when
an orthogonal basis (e.g. Haar, Coiflet, and Daubechies) is em-
ployed, while the use of a nonorthogonal wavelet function (e.g.
Mexican hat, Beta, and Morlet) implies the possible use of the con-
tinuous wavelet transform. The various kinds of wavelet transform
applications in hydrology include the feature characterization of
precipitation (Kumar and Foufoula-Georgiou, 1993a,b; Kumar,
1996; Özger et al., 2010; Mishra et al., 2011a) and discharge (Cou-
libaly and Burn, 2004; Labat, 2006), rainfall–runoff relations (Labat
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et al., 2000), drought-related forecasting (Özger et al., 2011, 2012),
and teleconnection analysis between regional hydrologic variabil-
ity and climatic patterns (Marković and Koch, 2005; Zhang et al.,
2007; Özger et al., 2009; Labat, 2010a; Mishra et al., 2011b; Niu,
2013), among others.

The use of wavelets for synthetic generation of hydrologic data
was, to our knowledge, first attempted by Bayazit and Aksoy
(2001), as a nonparametric data generation tool. The fundamental
idea in their approach is the decomposition of time series into the
details in time–frequency domain and then reconstruction by
properly changing the details to generate new time series. Bayazit
and Aksoy (2001) used the simplest wavelet function, the Haar
wavelet, to synthetically generate annual and monthly streamflow
series, and demonstrated its capability in generating non-skewed
data. Comparing this method with an autoregressive model and
five other models, Bayazit et al. (2001) demonstrated the advanta-
ges of the wavelet-based method in preserving the statistical char-
acteristics (i.e. the mean value and the autocorrelation) of the
observed time series. The method was then also successfully ap-
plied for generation of reservoir storage (Aksoy, 2001) and rainfall
data (Ünal et al., 2004).

In the study by Bayazit and Aksoy (2001), the annual or
monthly streamflow time series, with its length equal to some
power of 2, was decomposed into the wavelet details (i.e. wavelet
coefficients) at the corresponding different levels of resolution. In
order to preserve the autocorrelation features of the series, a ran-
dom selection of the decomposed wavelet coefficients at different
resolutions was implemented for formation of the first element of
the series. The subsequent elements were then generated one by
one by the summation of the sequenced wavelet details, in which
each detail value used was right next to those of the previous step
at each resolution. Wang et al. (2011) adopted the Trous algo-
rithm (Shensa, 1992; Aussem et al., 1998) to decompose and
reconstruct the observed daily streamflow time series. The first
two levels of the decomposed wavelet details (coefficients) and
the remaining approximation series were used for the reconstruc-
tion. Compared to the reconstruction strategy in Bayazit and Ak-
soy (2001), the difference in Wang et al. (2011) was the random
sampling. The details and approximation were divided into a
number of sub-series based on a yearly period. Then, the random
sampling was conducted from those sub-series at both the detail
level and the approximation level. Wang et al. (2011) reported
that their method avoids assumptions of probability distribution
types (e.g. Normal) and of the dependence structure (linear or
nonlinear).

These and other wavelet-based methods for synthetic genera-
tion of hydrologic data are essentially based on the discrete
wavelet transform. The discrete wavelet transform produces
wavelet spectrum that contains discrete ‘blocks’ of wavelet
power, which is certainly useful to compactly represent the asso-
ciated signals. At the same time, however, the features of ‘com-
pact representation’ simplify the variations at longer timescales.
To reveal (for the original signal) and reconstruct (for synthetic
generation) the variability at different timescales, the continuous
wavelet transform is preferable, since it offers smooth, continu-
ous variations in wavelet amplitude. To this end, the present
study makes the very first attempt to use the continuous wave-
let transform for synthetic data generation in hydrology. To illus-
trate the utility of the continuous wavelet transform, the study
employs the Morlet wavelet (Morlet et al., 1982a,b) for synthetic
generation of daily streamflow series in the Pearl River basin in
South China. To take into account the salient features of stream-
flow (including flow magnitude, the issue of data length, and
simplicity in application), different random permutations of
wavelet details are also presented in the data reconstruction
process.

2. Wavelet transform

The wavelet transform has shown its promise in diverse scien-
tific fields (e.g. for hydrology, see Labat, 2010b), with its capability
in analyzing variability properties for both stationary and non-
stationary time series at different timescales. Mathematically, a
wavelet transform decomposes a time series xt in terms of ‘‘daugh-
ter’’ wavelets w(t, s) derived from a ‘‘mother’’ wavelet function
w0(t) by the timescale (s) dilation and time position (t) translation:

wðt; sÞ ¼ 1
s1=2 w0

t0 � t
s

� �
ð1Þ

where s1/2 is an energy normalization factor to keep the energy of
daughter wavelets the same as the energy of the mother wavelet.
The wavelet transform of the time series xt is defined as the convo-
lution integral of xt and a dilated and translated version of w0(t):

Wðt; sÞ ¼ 1
s1=2

Z
w�

t0 � t
s

� �
xt dt ð2Þ

where w� is the complex conjugate of w defined on the time and
scale.

To be admissible as a wavelet function, it must have zero mean
and be localized in both time and timescale (frequency) domains
(Farge, 1992). Furthermore, several factors should be considered
in choosing the wavelet function, such as complex or real, width,
and shape. The complex Morlet wavelet function, chosen for this
study, is capable of (1) providing a good balance between time
and frequency localizations and (2) capturing the oscillatory fea-
tures because the complex function has more oscillation waves
(Torrence and Compo, 1998). The complex Morlet wavelet func-
tion, shown in Fig. 1, consists of a plane wave modulated by a
Gaussian:

w0ðgÞ ¼ p�1=4eix0ge�g2=2 ð3Þ

where g is the non-dimensional time parameter; x0 is the non-
dimensional frequency, with value of 6 to satisfy the admissibility
condition (Farge, 1992).

Consider a time series xt (e.g. streamflow) observed at an equal
time interval dt (e.g. daily) over a period of time t = 1, . . . , T. For the
purpose of convenience, the timescales of wavelet transform are
written as fractional powers of two:

sj ¼ s02jdj; j ¼ 0;1; . . . ; J ð4Þ

J ¼ dj�1log2
Tdt
s0

� �
ð5Þ
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Fig. 1. The real part (solid) and imaginary part (dashed) for the Morlet wavelet
(x0 = 6) in the time domain.
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