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s u m m a r y

Green’s function for poroelastic bimaterials is the foundation to study the interaction of fluid and solid in
poroelastic materials. For this object, we first summarize the compact general solutions of fluid-satu-
rated, transversely isotropic, poroelastic materials in terms of harmonic functions. Based on these com-
pact general solutions, the three-dimensional Green’s function for fluid-saturated, transversely isotropic,
poroelastic bimaterials under a steady-state point fluid source is solved by introducing six new harmonic
functions. All poroelastic components are expressed in terms of elementary functions and are convenient
to use. Numerical results are given graphically by contours and some conclusions for the pore fluid pres-
sure and stress distributions are obtained.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of the deformation in porous saturated materials
(Biot, 1955, 1956) is a subject of interest in the field of hydrology.
As a primary problem, the Green’s functions of poroelastic material
play an important role in both applied and theoretical studies on
the hydrology, especially the studies of interactions between the
water of the rivers, lakes and seas with the saturated, poroelastic
water-beds. Firstly, the Green’s functions are essential for the
boundary element method, which is an efficient numerical tool
to study the above hydrologic problems. Secondly, by the method
of superposition, the Green’s functions can be used to search for
the analytical solutions of the above hydrologic problems. By this
method, one can find the analytical solutions for sources distrib-
uted over an arbitrary region by integrating the Green’s functions
over this region.

In addition, the saturated, poroelastic water-beds are always
constituted of different poroelastic materials. This constitution will
lead to the obvious interface effects, which are often the main rea-
sons resulting in the move and failure of the water-beds. In this
case, as the primary foundation to study the interface effects, The

Green’s functions for saturated, poroelastic bimaterials can largely
benefit the analyses of this kind of hydrologic problems.

For isotropic materials, Banerjee and Butterfield (1982) pre-
sented the well-known closed-form Kelvin fundamental solution.
For transversely isotropic materials, Lifshitz and Rozentsveig
(1947) and Lejcek (1969) derived the Green’s functions using the
Fourier transform method. Elliott (1948), Kroner (1953) and Wills
(1965) obtained them using the direct method and Sveklo (1969)
found them using the complex method. Pan and Chou (1976)
solved the Green’s function in the form of compact elementary
functions. For anisotropic materials, Pan and Yuan (2000) and
Pan (2003) obtained the three-dimensional Green’s functions for
bimaterials with perfect and imperfect interfaces, respectively.

For poroelastic material, Cleary (1977) derived the Green’s func-
tions for an infinite fluid-saturated, isotropic, poroelastic material.
Rudnicki (1980) corrected some errors in those solutions for a
point force and fluid mass source. Rajapakse and Senjuntichai
(1993) obtained the Green’s functions for a semi-infinite fluid-sat-
urated, isotropic, poroelastic material. Watanabe and Kurashige
(1997) derived the solutions for an isotropic, poroelastic material
with vanishing permeability in one direction by using the Laplace
and Fourier transform method. Using the same approach, Ganbe
and Kurashige (2000) obtained the Green’s functions for an isotro-
pic, poroelastic material of transversely isotropic permeability.
Using Kupradze’s method (1979), Kazi-Aoual et al. (1988)
sought for the Green’s functions for an infinite fluid-saturated,
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transversely isotropic, poroelastic material. However, the solutions
in an explicit form are not presented. Employing the Kupradze’s
method together with the triple Fourier transforms and Hankel
transforms, Taguchi and Kurashige (2002) presented the Green’s
functions for an infinite fluid-saturated, transversely isotropic,
poroelastic material.

There are two important working states for poroelastic materi-
als are studied in above literatures. One is the steady-state in
which the poroelastic loading varies slowly with time and the rate
of fluid mass content vanishes. Another one is the transient-state
in which the poroelastic loading varies quickly with time and the
rate of fluid mass content does not vanish. Both states exist in
poroelastic water-beds and are all necessary to be studied. The
steady-state often exists in the areas which are always under the
water, while the transient-state often exists in the areas which
are near the sides of water-beds.

In this paper, the three-dimensional steady-state Green’s func-
tion for a point fluid source in a fluid-saturated, transversely iso-
tropic, poroelastic bimaterials is investigated. For completeness,
the general solution is summarized in Section 2 based on the works
of Chen et al. (2004) and Li et al. (2010). In Section 3, six new har-
monic functions are constructed in terms of elementary functions
with undetermined constants. The corresponding poroelastic field
can be obtained by substituting these functions into the general
solutions after determining the constants by the compatibility
and equilibrium conditions. Numerical examples are presented in
Section 4. The contours of the pore fluid pressure and stress com-
ponents are shown graphically. Finally, the paper is concluded in
Section 5.

2. General solution

Consider a fluid-saturated, fully transversely isotropic, poro-
elastic material in Cartesian coordinates (x,y,z). When the plane
of isotropy is parallel to the plane xoy, the constitutive relations
are (Cheng, 1997)
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where ui (i = x,y,z) are the components of mechanical displacement;
ri and sij (i, j = x,y,z) are the components of normal stress and shear
stress, respectively; p and f are the pore fluid pressure and the rate
of pore fluid mass content, respectively; k and ai (i = 1,3) are the
Biot coefficient and Biot effective stress coefficient, respectively;
cij (i, j = 1,2,3,4,6) are the elastic moduli. c66 = (c11 � c12)/2 is held
for transversely isotropic, poroelastic materials.

It should be noted that elastic moduli cij and Biot coefficient ai

are in relationships with engineering elastic moduli as follows:
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where E, G and E0, G0 are the in-plane and out-of-plane elastic mod-
uli, respectively; m is the drained Poisson’s ratio characterizing the
transverse strain reduction in the plane of isotropy due to a tensile
stress in the same plane, and m0 is the drained Poisson’s ratio corre-
sponding to the transverse strain reduction in the plane of isotropy
due to a tensile stress normal to it; K is the bulk modulus of solid
skeleton.

In the absence of body forces, the mechanical equilibrium equa-
tions are

@rx

@x
þ @sxy

@y
þ @szx

@z
¼ 0;

@sxy

@x
þ @ry

@y
þ @syz

@z

¼ 0;
@szx

@x
þ @syz

@y
þ @rz

@z
¼ 0: ð3aÞ

In the following analysis, uncoupled poroelastic theory is
adopted by assuming that the poroelastic loading varies slowly
with time and the rate of fluid mass content vanishes. Conse-
quently, the poroelastic material is in a steady-state, the pore fluid
pressure field is constant in time and governed by the following La-
place equations.
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where ji (i = 1,3) are permeability and j2 = j1 when the body is
isotropy in the xy-plane.

Parallel to Chen et al. (2004), the general solutions to Eqs. (1)
and (3) can be induced as follows:
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where the quantities U, r1, r2 and sz can be defined in the Cartesian
coordinate (x,y,z) and the cylindrical coordinate (r,/,z) in the com-
plex forms as follows:

U ¼ uþ iv ¼ ei/ður þ iu/Þ; r1 ¼ rx þ ry ¼ rr þ r/;

r2 ¼ rx � ry þ 2isxy ¼ e2i/ðrr � r/ þ 2isr/Þ;
sz ¼ sxz þ isyz ¼ ei/ðszr þ is/zÞ;

ð5Þ

where zj ¼ sjz ðj ¼ 0;1;2;3Þ; s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where
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wj (j = 0,1,2,3) satisfy the following harmonic equations:
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where
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