
Effects of measurement uncertainties of meteorological data
on estimates of site water balance components

Uwe Spank a,⇑, Kai Schwärzel b, Maik Renner a,c, Uta Moderow a, Christian Bernhofer a

a Institute of Hydrology and Meteorology, Technische Universität Dresden, Pienner Str. 23, D-01737 Tharandt, Germany
b Institute of Soil Science and Site Ecology, Technische Universität Dresden, Pienner Str. 19, D-01737 Tharandt, Germany
c Biospheric Theory and Modelling Group, Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany1

a r t i c l e i n f o

Article history:
Received 13 June 2012
Received in revised form 22 March 2013
Accepted 27 March 2013
Available online 8 April 2013
This manuscript was handled by Andras
Bardossy, Editor-in-Chief, with the
assistance of Niko Verhoest, Associate Editor

Keywords:
Eddy covariance
BROOK90
Model complexity
Monte Carlo simulation
Observation uncertainty
Parameter uncertainty

s u m m a r y

Numerical water balance models are widely used in ecological and hydro sciences. However, their appli-
cation is related to specific problems and uncertainties. The reliability of model prediction depends on (i)
model concept, (ii) parameters, (iii) uncertainty of input data, and (iv) uncertainty of reference data. How
model concept (i) and parameters (ii) effect the model’s performance is an often treated problem. How-
ever, the effects of (iii) and (iv) are typically ignored or only barely treated in context of regionalisation
and generalisation. In this study, the actual measurement uncertainties of input and reference data are
the main focus. Furthermore, the evaluation of model results is analysed with regard to uncertainties
of reference data. A special feature is the use of evapotranspiration (measured via the eddy covariance)
instead of runoff for evaluation of simulation results. It is shown that seemingly small uncertainties of
measurements can create significant uncertainties in simulation results depending on the temporal scale
of investigation. As an example, the uncertainty of measurements of daily global radiation sum up to an
uncertainty of 250 MJ (equivalent to 100 mm) on an annual scale, which causes an uncertainty of 40 mm
in simulated grass-reverence evapotranspiration. Summarised and generalised, the measurement uncer-
tainties of all input data create an uncertainty on average of around 5% in the simulated annual evapo-
transpiration and of around 10% in the simulated annual seepage. However, the effects can be
significantly higher in years with extreme events and can reach up to 15%. It is demonstrated that uncer-
tainties of individual variables are not simply superposed but interact in a complex way. Thereby, it has
become apparent that the effects of measurement uncertainties on model results are similar for complex
and for simple models.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The quantification of the water balance and its individual com-
ponents is a necessary precondition for successful and sustainable
water resources management, farming and forestry (Wisser et al.,
2010; Xu and Singh, 2004; Peel and Blöschl, 2011). Typically, the
water balance or individual components of water balance are esti-
mated using numerical models (Xiong and Guo, 1999; Boughton,
2005; Schwärzel et al., 2009a). The models are very different in
terms of concept, structure and complexity as various reviews have
shown (e.g., Dooge, 1986; Beven, 1989; Xu and Singh, 1998; Xiong
and Guo, 1999; Xu and Singh, 2004; Boughton, 2005; Liu and

Gupta, 2007). Very complex models address all relevant processes
(e.g., interception, transpiration, snowmelt and soil water move-
ment) by physically based approaches. But there are also much
simpler models which are driven by conceptual approaches or
empirically derived relations.

All models are abstractions, simplifications and interpretations
of reality (Refsgaard et al., 2006). Therefore derivations are inevita-
ble between observations and simulations (Gupta et al., 2006;
Wagener and Gupta, 2005; Kuczera et al., 2010). Following Renard
et al. (2010), Butts et al. (2004) and Oudin et al. (2006), four
sources for discrepancies and hence for inherent uncertainties of
simulated water balance components can be identified.

1.1. Model uncertainty

Depending on scientific question and spatial and temporal scale
of study, specific simplifications of model structure are absolutely
essential. However, the algorithms and internal structures must be
able to describe all relevant processes (and so the system) suffi-
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ciently (Wagener et al., 2001; Beven, 2006; Refsgaard et al., 2006;
Kavetski et al., 2011). Thus a model never reflects or accounts all
hydrological processes (Butts et al., 2004; Kuczera et al., 2010;
Andréassian et al., 2010). This uncertainty is called model
uncertainty.

1.2. Parameter uncertainty

Parameters are necessary numerical information to adapt a
model to a specific application (Yang, 2011). The ‘parameter uncer-
tainty’ reflects our limitation to specify exact values for these
parameters (Renard et al., 2010). The main reasons are due to tem-
poral dynamics of parameter values and limitations of parameter
estimation (Yang et al., 2007; Reusser et al., 2011). The last point
is correlated with the fact that a lot of parameters can’t be mea-
sured objectively and must be determined inversely by calibration
(Gupta et al., 2006; Kavetski et al., 2006; Pappenberger et al., 2006;
Wagener and Wheater, 2006). But even measurable parameters are
not certain as their accuracy and representativeness is limited due
to scale dependence and measurement uncertainties (Bergström
and Graham, 1998; Blöschl, 2001; Beven, 2006). It is necessary to
know how much information is needed to get reliable simulation
results (Wagener et al., 2001; Sieber and Uhlenbrook, 2005). This
question includes also which information is important and which
is dispensable. Thus the analysis of parameter uncertainty is clo-
sely connected with analysis of parameter sensitivity (Reusser
et al., 2011; Nossent et al., 2011).

1.3. Input uncertainty

Every measurement is related to specific tolerances. So any
measured value deviates somewhat from the actual value (Taylor,
1997). The questions arise, how do uncertainties of meteorological
input data (model drivers), e.g. precipitation P, affect the simula-
tion results and do the individual uncertainties amplify or compen-
sate each other? The term ‘input uncertainty’ includes both ‘actual
measurement uncertainties’ (sampling errors) as well as uncertain-
ties regarding to regionalisation and generalisation of measured
values to derive at area or catchment estimates (Renard et al.,
2010).

1.4. Reference uncertainty

This point is directly related to the former point. If input data are
uncertain, the data being used for verification of simulation results -
the reference data as observed streamflow or (as in this study) mea-
sured evapotranspiration - include similar uncertainties. Here it is
important to know how uncertainties of these data influence the
evaluation of simulation results. Reference uncertainties are caused
(similar to input uncertainties) by (a) limitations of measurability
and (b) limitations of representativeness. A classical example for
(b) is the representativeness of measured streamflow in catchments
where the groundwater flow is significant share of total runoff.

Andréassian et al. (2001), Stisen et al. (2011) and Yang (2011)
emphasise effects of moderate input uncertainties are often com-
pensated by model calibration. The same can be assumed for refer-
ence uncertainties. In that way, uncertainties due to (iii) and (iv) do
not only affect the prediction accuracy but also the parameter
identification (Andréassian et al., 2001; Refsgaard et al., 2006;
Vrugt et al., 2008; Kuczera et al., 2010; Looper et al., 2012). This
should be considered if models and parameters are to be improved
(Kavetski et al., 2006; Oudin et al., 2006; Stisen et al., 2011). All
methods of parameter optimisation or all structural improvements
of model concept are non-effective if the background noise due to
input and reference uncertainties are unknown. This point is par-
ticular important for the practical application of models. So ignor-

ing background noise due to measurement uncertainties can lead
to serious misinterpretations and bad resource management if
the simulation results form the basis of decision making processes
(Saisana et al., 2005; Kavetski et al., 2006).

Uncertainty analysis and uncertainty assessment are important
issues in hydrological research (Wagener and Gupta, 2005). Details
of model uncertainties can be found in Butts et al. (2004), Refsg-
aard et al. (2006), Clark et al. (2008), Renard et al. (2010). Problems
of parameter uncertainties are discussed in Duan et al. (1992),
Bárdossy (2007), Bárdossy and Singh (2008), Nossent et al.
(2011), Krauße and Cullmann (2012). Effects of input uncertainties
on modelling results have been studied since the late sixties (And-
réassian et al., 2001). In particular, effects of sampling errors in
precipitation data (e.g., Wood et al., 2000; Adam and Lettenmaier,
2003; Molini et al., 2005; Stisen et al., 2012) and shortcomings in
context of up-scaling and interpolation of precipitation point mea-
surements to areal (catchment) precipitation data (e.g., Moulin
et al., 2009; Shao et al., 2012; Renard et al., 2011; Looper et al.,
2012) are analysed.

Comprehensive studies about the complex interactions be-
tween input and reference uncertainties as well as about their ef-
fects on parameter identification and model structure
optimisation have been published recently; see Renard et al.
(2007), Bárdossy and Das (2008), Vrugt et al. (2008), Salamon
and Feyen (2009), Thyer et al. (2009), Renard et al. (2010), Kavetski
et al. (2011), McMillan et al. (2011) and references therein. Pre-
dominately, the focus was on catchment scale. Thus the majority
of these studies deal with shortcomings of conceptual modelling
and uncertainties of areal precipitation data. However, sampling
errors, uncertainties in other input variables (e.g., global radiation
RG, temperature T, vapour pressure e, wind speed u) as well as
uncertainties of the reference were seldom tackled. These uncer-
tainties can also have significant influence on model performance
as demonstrated by Andréassian et al. (2004), Oudin et al. (2006)
and McMillan et al. (2010).

As already noted, effects of moderate input uncertainties and
reference uncertainties are damped or compensated by model cal-
ibration. Therefore, their impact on the reliability of model results
is blurred on catchment scale. This study analyse effects of input
and reference uncertainties on site scale. In contrast to previous
studies, the measured evapotranspiration is used as reference in-
stead streamflow. Furthermore, the uncertainty assessment is re-
lated to the typical range of effects rather than on potential
effects (worst cases).

On site scale, input data and model parameters are hardly af-
fected by regionalisation and generalisation; necessary simplifica-
tions of model concept and model structure are also reduced; but
‘actual measurement errors’ emerge (Blöschl and Sivapalan,
1995; Bergström and Graham, 1998; Sivapalan, 2006). Thus, the
site scale is optimal to analyse direct effects of measurement
uncertainties in meteorological variables but also in physical site
parameters. The knowledge about effects of measurement uncer-
tainties on simulated site water budget is very important as exact
quantifications of water balance components and correct process
understanding on site scale are fundamental for system under-
standing and system description on catchment scale (Bergström
and Graham, 1998; Vázquez et al., 2002; Blöschl, 2006; Sposito,
2008; Martina et al., 2011).

2. Material and methods

2.1. Methodology

The four key questions, (i) model uncertainty, (ii) parameter
uncertainty, (iii) input uncertainty and (iv) reference uncertainty,
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