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s u m m a r y

We consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer
of water. A modified finite element method with triangular elements and linear shape functions is used
for spatial discretization. The proposed modification refers to the procedure of spatial integration and
leads to a more general algorithm involving a weighting parameter. The standard finite element method
and the finite difference method are its particular cases. Time integration is performed using a two-stage
difference scheme with another weighting parameter. The resulting systems of nonlinear algebraic equa-
tions are solved using the Picard and Newton iterative methods. It is shown that the two weighting
parameters determine the accuracy and stability of the numerical solution as well as the convergence
of iterative process. Accuracy analysis using the modified equation approach carried out for linear version
of the governing equation allowed to evaluate the numerical diffusion and dispersion generated by the
method as well as to explain its properties.

As the finite element method accounts for the Neumann type of boundary conditions in a natural way,
no special treatment of the boundary is needed. Consequently the problem of moving grid point, which
must follow the shoreline, in the proposed approach is overcome automatically. The current position of
moving boundary is obtained as a result of solution of the governing equation at fixed grid point.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In hydrological practice one very often faces the problem of
delimitation of the flooding large areas adjacent the river, which
are initially dry. Typically such a situation arises while analyzing
the dam failure or dike break problems. If, for instance, during
the flood period the protecting dike is destroyed, the water will
flow out of the breach usually covering very large area. For evident
reasons it is important to know the extent of the inundation in
space and in time. This can be done by solving 2D shallow water
equations (Weiyan, 1992), i.e. the continuity equation:
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and two dynamic equations written in x and y directions as follows:
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where x, y is the space co-ordinates, t the time, H the water surface
elevation above the assumed datum, h = H–Z the flow depth, Z the
bottom elevation above the assumed datum, qx the specific dis-
charge in x direction, qy the specific discharge in y direction,
U = P–E–I the source term which usually involves the rainfall (P),
evaporation (E) and infiltration (I), n the Manning roughness coeffi-

cient, g the acceleration due to gravity, jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x þ q2
y

q
is the modu-

lus of specific discharge in the flow direction.
Since the flooded area is initially dry, Eqs. (1)–(3) must be inte-

grated over the solution domain, which develops in time. In other
words, the shallow water equations are solved over the domain
delimited by a moving shoreline, which separates dry and wet
areas. Therefore we are looking not only for the solution of men-
tioned equations within the varying domain but also for the cur-
rent position of the moving boundaries. Because Eqs. (1)–(3) hold
for the flow depth greater than zero, they formally cannot be
solved over dry area. When new parts of flooded area are continu-
ously included into or excluded from the solution domain, the
numerical solution of the shallow water equations constitutes
non-trivial problem. There are various techniques for reproducing
moving shoreline, e.g. Heniche et al. (2000). Special numerical
treatment is necessary since typically the shoreline is going be-
tween the neighboring nodes. Additional difficulty appears when
the flow becomes supercritical. It should be added that if in the
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solution of 2D shallow water equations the discontinuities are ex-
pected, the robust and reliable approach seems to be the finite vol-
ume method (LeVeque, 2002).

Very often the problem of water flow over initially dry area can
be solved using the approximate approach provided by simplifica-
tion of the governing equations. In Eqs. (2) and (3) the inertial force
can be neglected. Then we will have the original continuity equa-
tion and the simplified dynamic equations. Consequently one ob-
tains a simplified model of unsteady flow in the form of 2D
diffusive wave, which can be reduced to a single equation with
one unknown function.

There are many reasons which encourage applying such kind of
approach. For instance, Horritt and Bates (2001) compared two ap-
proaches: a raster based model using the simplified flow equation
and 2D full shallow water equations solved with the finite element
method (FEM), concluded ‘‘. . .that topography is more important
than process representation, and a relatively simple model can
be used to good effect’’. On the other hand Prestininzi (2008) tested
the parabolic approximation of the 2D shallow water equations
against data from a physical model of dam break event. Their anal-
ysis suggests that the parabolic model may effectively reproduce
the principal features of an inundation flow even in its extreme
case such as the dam break problem. If the simplified models can
be applied for a dam beak event one can expect them to be useful
also for a dike break. When water enters the floodplain one can
suppose that except the vicinity of breach, it is characterized by
rather low dynamics. The flooding flow due to dike break propa-
gates freely in a large area so it has rather diffusive character with
the forces of gravity, pressure and friction dominating (Zhang et al.,
2004). Similar conclusions are presented by other authors (see for
example large review given by Singh (1996). In this paper the dif-
fusive wave is considered.

2D diffusive wave equation is obtained via simplification of the
system of shallow water equations. Its derivation was proposed by
Hromadka and Yen (1986). Simplification of both dynamic equa-
tions is carried out by neglecting of the inertial force. Therefore
they become as follows:
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where qx ¼ q � cosu and qy ¼ q � sin u (u is angle between the flow
direction and x axis: u = arctan(qx/qy)). Using the Manning formula
the components of mass flux are expressed as:
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where @H/@s is a gradient of the water stage with regard to the flow
direction (denoted by s). With Eqs. (6) and (7) the continuity Eq. (1)
takes the following form:
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For details of the derivation see Hromadka and Yen (1986) or
Singh (1996).

Eq. (8), known as 2D nonlinear diffusive wave equation, is a par-
tial differential equation of 2nd order of parabolic type with source

term. Due its strong nonlinearity this equation seems to be very sim-
ilar to the Richards equation describing the flow in unsaturated por-
ous media (e.g. Weill et al., 2009). In order to obtain the function
H(x,y, t) Eq. (8) must be integrated numerically for initial and bound-
ary conditions properly imposed at the limits of solution domain.

Solution of the diffusive wave equation (8) can be carried out
using the Nodal Domain Integration Method (Hromadka and Yen
(1986), Singh (1996)). The method is based on the finite difference
technique with uniform rectangular meshes. It was also developed
for triangular mesh (see for instance Zhang et al. (2004)). The inte-
gration in time is commonly carried out using the explicit or impli-
cit formulas of 1st order.

The diffusive wave approach can be also applied in a different
way. Instead of Eq. (8) one can use the storage cell equation ob-
tained by space integration of the differential continuity equation
and the Manning formula governing the flow between cells.
Although this technique is known since many years (Cunge,
1975) it is still applied. For instance recently Moussa and Bocquil-
lon (2009) applied this method for solving the flow problem over
floodplain of rather complex river system. The same approach with
a modified method for solving the intercell flux was applied by
Prestininzi (2008).

As far as the finite element method (FEM) is considered, it is
well known that this method is particularly suitable for solving
2D parabolic equations. Although it can be successfully applied
for 1D flow and transport equations (Blandford and Ormsbee,
1993; Szymkiewicz, 1995) its advantages are more clear for 2D
and 3D problems. The two most valuable features of FEM are: very
flexible spatial discretization and simple way of introducing of the
imposed boundary conditions. Moreover in the case of diffusive
wave equation FEM provides the numerical solution including
the position of the boundary on the fixed grid point covering both
dry and wet parts of the considered flow area. It is interesting that
this method is frequently used for solution of the 2D shallow water
equations (Heniche et al. (2000), Horritt and Bates (2001), Horritt
(2002)), but it is seldom applied for solution of the 2D nonlinear
diffusive wave equation (8). Recently the finite element technique
has been used by Weill et al. (2009). One possible explanation
might be that the Galerkin FEM generates oscillations in the case
of advection dominated flow (Heniche et al., 2000). As a matter
of fact these oscillations are caused by the numerical dispersion
produced by the method. It appears that in the case of the triangle
elements and linear trial functions it is possible to modify the stan-
dard FEM in such a way that the dispersion error is remarkably re-
duced. This improvement of FEM is the subject of this paper.

2. Solution of 2D diffusive wave equation using the modified
finite element method

FEM is one of the most popular approaches for solving the par-
tial differential equations. Comprehensive presentations of the
method oriented for solving the fluid mechanics problems are gi-
ven by Gresho and Sani (1998), Fletcher (1991), Oden and Reddy
(1976) among others. To better explain the proposed modification
of the method let us start with short description of its standard
form.

In the finite element method the continuous domain is divided
into smaller subareas – the finite elements. It is assumed that these
elements are joined in a finite number of points lying at the ele-
ment’s boundary. These points are the nodes, in which the approx-
imate solution will be computed. Let us divide the continuous
domain C closed by the boundary B into N triangular elements
using M nodes as it is shown in Fig. 1.

According to the Galerkin procedure (Fletcher, 1991; Zie-
nkiewicz, 1972) the solution of Eq. (8) should satisfy the condition:
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