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s u m m a r y

Soil field experiments usually consist of measurements of soil temperatures, heat fluxes and soil water
contents. Accurate determination of the soil thermal field, in particular, prediction of the soil surface tem-
perature and the ground heat, contains the signature to the surface energy partitioning, and is therefore
critical to the surface energy balance closure problem. In this paper, we develop a numerical procedure to
reconstruct the entire soil thermal field from a single depth measurement of either temperature or heat
flux. The new algorithm is based on Green’s function approach by using the fundamental solution of heat
conduction in semi-infinite soils and Duhamel’s integral for incorporation of general boundary condi-
tions. It is highlighted that the new approach is capable of accurately reproducing results of some existing
numerical approaches, with a more general setting and treatment of the heat diffusion problem, and
hence provides a possible unified framework for the estimation of thermal field in soils.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The transport of heat underneath the Earth’s surface and the
subsequent determination of the soil thermal field (viz. soil tem-
perature and soil heat flux) are critical in regulating the subsurface
and surface physical processes. In particular, as all major surface
energy budgets (net radiative, sensible, latent and ground heat
fluxes) are strong functions of the surface temperature, the subsur-
face heat transport largely dictates the partitioning of the available
energy on the land surface (net radiation) into the dissipative heat
budgets (sensible, latent and ground heat). A recent study by Bat-
eni and Entekhabi (2012) showed that the land surface tempera-
ture can implicitly contain the signature to the surface energy
partitioning through linear stability analysis. The accurate deter-
mination of the soil thermal field, therefore, is essential in estab-
lishing and assessing the surface energy balance closure and has
attracted extensive research effort concerned with climate, weath-
er and atmospheric dynamics (de Silans et al., 1997; Foken, 2008;
Heusinkveld et al., 2004; McCumber and Pielke, 1981).

The subsurface thermal field can be constructed by solving the
coupled heat, liquid water and vapor transport equations using ad-
vanced numerical techniques, such as the finite element method
(FEM) (Bittelli et al., 2008; Vogel et al., 2011). On the other hand,
numerous analytically-based approaches have been developed in

past decades, to predict soil temperature and/or soil heat flux
based on the one-dimensional (1D) heat diffusion, with applica-
tions to a wide range of areas including agronomy, meteorology,
hydrology and ecology (Gao et al., 2003; Guaraglia et al., 2001;
Holmes et al., 2008; Horton and Wierenga, 1983; Nunez et al.,
2010). These models made use of analytical solutions of heat con-
duction in semi-infinite soils, and are numerically more economic
and provide deeper insight into the subsurface physics as com-
pared to FEM. In these models, certain time series of measured soil
thermal properties, temperatures and heat fluxes at various depths
are required as auxiliary data to complete estimations of the soil
thermal quantities. Alternatively, the force-restore method, origi-
nally proposed for the derivation of prognostic surface tempera-
ture equations (Bhumralkar, 1975), together with its improved
forms (Arya, 2001; Deardorff, 1978; Gao et al., 2008), were proven
a powerful tool for soil thermal predictions. Instead of solving the
second order partial differential equation, the heat diffusion pro-
cess is simplified and represented as first order ordinary differen-
tial equations in the force-restore method, such that standard
integration technique can be directly applied to obtain solutions
of soil thermal field.

However, some theoretical aspects regarding the heat conduc-
tion process in soils remain obscure among researchers, leading
to confusion in problem definition (Wang and Bou-Zeid, 2011),
overdesign of auxiliary measurements (Wang and Bou-Zeid,
2012) and unnecessary restriction in model applicability (Wang
and Bras, 1999). As a consequence, there are some major limita-
tions inherent in most numerical models in the literature:
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(1) Force-restore methods, represented by first order differen-
tial equations, are inevitably simplifications of the exact heat
diffusion process. At best, these solutions converge to the
finite difference solution of the second-order diffusion equa-
tion (Deardorff, 1978).

(2) Boundary conditions of the 1D heat equation are usually
prescribed using analytical functions, i.e. represented by
sinusoidal forms or by Fourier series (Gao et al., 2003;
Holmes et al., 2008; Horton and Wierenga, 1983; Nunez
et al., 2010) whereas general boundary conditions repre-
senting more realistic natural forcing are not permissible.

(3) Auxiliary profile measurement of soil temperature, heat flux,
and/or soil water content at different depths is required to
construct the complete thermal field (Guaraglia et al.,
2001; Kimball and Jackson, 1975; Liebethal et al., 2005),
whereas only partial information of the thermal field can
be reconstructed using measurements at a single depth
(Wang and Bras, 1999).

In addition, while it is well-known that evolutions of the soil
temperature and heat flux are two physically inseparable pro-
cesses in the heat conduction (Carslaw and Jaeger, 1959), the pos-
sibility has long been overlooked that the complete thermal field
information can be encrypted into a time series of a single thermal
quantity (temperature or soil flux). This study is motivated from
the prior work of the author (Wang and Bou-Zeid, 2012), in which
the ground heat flux was estimated from the heat flux measure-
ment at a single depth. The combination of Duhamel’s principle
and Green’s function solutions of heat diffusion equation provide
a powerful tool, rendering general solutions of 1D inhomogeneous
heat diffusion problems analytically tractable. Here we further ex-
tend the Green’s function approach in Wang and Bou-Zeid (2012)
to reconstruct the soil thermal field from a single depth measure-
ment of either temperature or heat flux (but not both).

The proposed method is validated by comparisons against the
exact solution of a canonical 1D conduction problem. Furthermore
numerical results are compared among predictions of the proposed
and existing numerical methods, as well as field measurements of
subsurface soil temperature and heat flux in a grassland area. The
algorithm for reconstruction of the soil thermal field using a single
depth measurement is shown to be robust and of good accuracy.
We also show that the proposed method can reproduce estima-
tions of soil temperature and soil heat flux by some commonly
used numerical approaches with a more general problem setting.
Therefore it provides a unique numerical algorithm, capable of
embracing a family of existing numerical models in the literature
under one unified framework. Moreover, the success of the new
numerical algorithm sheds light on further development of this ap-
proach to solve, e.g. more general advection–diffusion process gov-
erning the coupled subsurface heat and soil moisture transport.

2. Mathematical model

In practice, the Earth’s soil layer can be mathematically treated
as a 1D semi-infinite solid domain with the spatial coordinate
0 6 z <1 (z is positive downwards). The 1D heat diffusion equa-
tion governing the evolution of the soil thermal field is given by

@Tðz; tÞ
@t

¼ j
@T2ðz; tÞ
@z2 ; ð1Þ

where j = k/qc is the soil thermal diffusivity, with k, q and c the
thermal conductivity, the density, and the specific heat of soil
respectively. Note that in Eq. (1), we assumed the thermal diffusiv-
ity is constant across the depth of soil. While in general soil thermal
properties are functions of soil moisture and soil temperature, the

assumption of constant diffusivity is reasonable for most applica-
tions in soil physics, see, for example, the physical argument by
Wang and Bras (1999) and the validation against experiments
(Hanks, 1992; Wang and Bou-Zeid, 2012). It is also noteworthy that
under extreme weather and climate conditions at the soil–atmo-
spheric interface, such as during floods or in permafrost soils, in
addition to heat diffusion, the contribution from moisture advection
through porous soil layers will be significant (Gao, 2005; Heitman
et al., 2010) and the complete heat transport process will be more
realistically governed by the advection–diffusion equation. General
formulation of the advection–diffusion problem for the coupled
subsurface heat and moisture transfer is beyond the scope of this
study, but remains an intriguing extension of the numerical algo-
rithm proposed here.

For brevity, hereafter we denote any quantity involving both
spatial and temporal variables as v(z, t) = vz(t), e.g. G(z = 0, t) = G0(t)
represents the time series of the ground heat flux at z = 0. The
boundary conditions (BCs) at the surface and the deep end of the
soil are prescribed by heat flux forcing (Neumann boundaries), as

�k
@TzðtÞ
@z

����
z¼0
¼ f ðtÞ;�k

@TzðtÞ
@z

����
z!1
¼ 0; ð2Þ

respectively. Note that in Eq. (2), the boundary forcing f(t) is an
rather arbitrary function, provided it is square-integrable, i.e.
well-defined in the L2 (Hilbert) space. The initial condition, for sim-
plicity, is prescribed by uniform temperature distribution inside the
soil layer. This simplification has limited initial perturbation effect
on the solution after a relatively short integration time (Wang
and Bou-Zeid, 2012):

Tzðt ¼ 0Þ ¼ Ti: ð3Þ

In general, we can apply the Duhamel’s principle (Carslaw and
Jaeger, 1959) to solve the boundary value problem (BVP) presented
in Eqs. (1)–(3). The temperature solution for the heat conduction in
the semi-infinite domain is given by a Stieltjes integral, convolut-
ing the boundary flux forcing and Green’s function solution (Cole
et al., 2011; Wang et al., 2011), as

TzðtÞ ¼ Ti þ
Z t

0
f ðt � sÞdgzðsÞ: ð4Þ

In Eq. (4), gz(t) is the Green’s function solution of a homogeneous
heat conduction problem corresponding to f(t) = d(t), where d(t) is
the Dirac delta function, given by (Carslaw and Jaeger, 1959):

gzðtÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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jt
p

� �
; ð5Þ

where erfc(�) is the complimentary error function.
Combining Eqs. (4) and (5), and applying Fourier’s law for heat

conduction, the solution of soil heat flux can be calculated as

GzðtÞ ¼ �k
@TzðtÞ
@z

����
z>0
¼
Z t

0
f ðt � sÞdFzðsÞ; ð6Þ

where

FzðtÞ ¼ erfc
z

2
ffiffiffiffiffiffi
jt
p

� �
; ð7Þ

is the fundamental solution of the soil heat flux of the 1D heat con-
duction with homogeneous BC. At the surface, z = 0, it is straightfor-
ward to show that Eq. (6) can be reduced to G0(t) � f(t). This
relation, as pointed out by Wang and Bou-Zeid (2011), physically
preserves the energy conservation law in an infinitesimally thin
layer of Earth’s surface. Thus we have

TzðtÞ � Ti ¼
Z t

0
G0ðt � sÞdgzðsÞ: ð8Þ

542 Z.-H. Wang / Journal of Hydrology 464–465 (2012) 541–549



Download English Version:

https://daneshyari.com/en/article/6413944

Download Persian Version:

https://daneshyari.com/article/6413944

Daneshyari.com

https://daneshyari.com/en/article/6413944
https://daneshyari.com/article/6413944
https://daneshyari.com

