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Image analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at
multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns
from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture dis-
tribution using fractal parameters. Twelve soil pits (0.70 m long x 0.60 m width x 0.30 m depth) were
excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were
established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from
each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 x 945 pixels with one
physical pixel ~373 pum of the photographed soil pit. Each soil image was analyzed using two fractal scal-
ing exponents, box counting (capacity) dimension (Dpc) and interface fractal dimension (D;), and three
prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit
scale (A), fractal lacunarity at the unit scale (1) and Shannon entropy at the unit scale (S;). All the scaling
parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was
the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal
exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While
fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients
represent the investigated soil property as seen through a higher resolution microscope. In spite of some
computational and practical limitations, image analysis of apparent soil moisture patterns could be used

in connection with traditional soil moisture sampling, which always renders punctual estimates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Image analysis is a modern tool for quantifying the morphology
of spatial patterns of soil properties. Many works have been con-
ducted in this direction using both, 2D and 3D gray-level or binary
(e.g. black and white) images. In particular, image analysis seems to
be a useful tool for describing vegetative developmental stages
(Behrens and Diepenbrock, 2006), texture recognition (Kilic and
Abiyev, 2011) or quantification of differential growth processes in
plant root and shoot growth zones (Chavarria-Krauser et al.,
2007). Combinations of image and fractal analyses have been used
for characterizing bulk density patterns (Zeng et al., 1996), soil
macroporosity (Gantzer and Anderson, 2002), soil micromorphol-
ogy (Bartoli et al., 2005) and soil structural state (Dathe and
Thullner, 2005). In almost all previously cited studies, the box
counting (capacity) dimension has been considered as the main
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parameter for characterizing the scaling behavior of the investi-
gated soil property. Some recent works have also used multifractal
measures for characterizing water fingering from magnetic
resonance images (Posadas et al.,, 2009) and mass and entropy
dimensions derived from 3-D soil images (Tarquis et al., 2008). In
general, some other indices as fractal lacunarity and entropy scaling
need to be incorporated as complementary parameters. Some stud-
ies have used fractal lacunarity for landscape texture evaluation
(e.g. Plotnick et al., 1993) or scale-dependent clustering of fracture
networks (Roy et al., 2010), but it is still a less considered scaling
parameter. Even though most hydraulic soil properties are direct
or indirect consequences of soil moisture distribution, there are rel-
atively few works using 2-D or 3-D image analysis for describing
soil moisture scaling. Due to the evident visual contrast among wet-
ter and drier zones, image and fractal analyses can be useful for
characterizing the local and global distribution of soil moisture
within soil profiles. The objectives of the present work were (i) to
define apparent soil moisture patterns from vertical planes of Ver-
tisol pit images and (ii) to describe the scaling of apparent soil mois-
ture distribution using fractal parameters.
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2. Theoretical considerations

Here we present a brief overview of the main fractal and pre-
fractal parameters involved in the present work and the way they
have been estimated.

2.1. Box counting (capacity) dimension

The use of box counting rationale for computing fractal (capac-
ity) dimension assumes that the investigated pattern (e.g. soil
moisture) fits some or all of the strong symmetries (e.g. transla-
tional, rotational and/or dilation invariance) (Feder, 1988) which
can be called scaling invariance. For a 2-dimensional image one
has to divide a Euclidean box of linear size, L, which contains the
pattern, into (L/r)?> smaller boxes each of linear size r. The number
of non-overlapping boxes, N;, of size r; < L containing pieces of the
pattern (for example wet pixels) follows a power law:
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where Dpc is the box counting or fractal capacity dimension. In
practice, Eq. (1) represents a limit as r; » 0, which imposes some
restrictions. For example, L represents the finite system size condi-
tion (upper cutoff) while always r; # 0 (Baveye et al., 2008).

Eq. (1) was used with experimental data in the form:

N(r) = Ar o (2)

where A is a scaling coefficient accounting for the number of boxes
intercepting the considered pattern (e.g. wet or dry zones) at the
unit scale (e.g. r — 1). One could note from Eq. (1) that:

A o [Poe (3)

which connects the A coefficient directly with the fractal scaling of
the investigated soil property or image pattern (Dpc in this case) and
the initiator size, L. A log-log transformation of Eq. (2) allows one to
estimate Dpc as the slope of the linear regression equation and
log(A) as the corresponding intercept. That is:

log(N) = log(A) — Dgc log(r) (4)

To our knowledge, only Kravchenko et al. (2011) and few other
workers have paid attention to the potential utility of the A coeffi-
cient as another scaling constant. Thus, within the context of the
present work the A coefficient is used for estimating a corrected
value of the apparent soil moisture.

2.2. Interface fractal dimension

Interfaces are geometrical structures separating two or more
phases in soil system (e.g. pore-solid or dry-wet interface). From
a theoretical point of view, a real world interface mimics, to some
extent, the random counterpart of the deterministic von Koch
curve. Many important physical, chemical and biological phenom-
ena occur just at those boundaries. In principle, the box counting
fractal theory is appropriate for estimating the complex geometry
of such boundaries. Thus, Egs. (1), (2), and (4) are valid for a quan-
titative description of such irregular interfaces. However, in this
case Dgc = D; (the interface fractal dimension) and N = N(r) is the
number of boxes covering the interface at each resolution, r. For
the case of the dry-wet frontier, the N4(r) value can be calculated
using the same equation in Dathe and Thullner (2005):

Ns(r) = Nu(r) + Na(r) = Nimax(T) ()

where N,, and N, are the number of boxes covering wet and dry
zones, respectively, and Ny, is the total number of boxes covering

the entire image at each resolution, r. In particular, Ny,ax(r) can be
calculated using a simple equation:

N
Nmax(r):ﬁv 1‘12172,4,...,]_, (6)
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where N, is the total number of pixels covering the image.

2.3. Fractal lacunarity

Fractal lacunarity is a complementary measure for objects with
similar fractal dimensions (Mandelbrot, 1983; Kaye, 1989). Allain
and Cloitre (1991) defined lacunarity as a scale-dependent mea-
sure of heterogeneity of an object, whether or not it is fractal. In
other words, it is the deviation of a fractal object from translational
invariance. Briefly, lacunarity conveys information on the density
of occupation of massless zones within the fractal object. For the
sake of completeness, the term succolation is also complementary
to lacunarity for fractal systems where percolation can occur (e.g.
soils). According to Mandelbrot (1977) definition, a succolating
system is one close to percolation. The theoretical background
for computing lacunarity using the gliding box method is reported
in many papers (e.g. Allain and Cloitre, 1991; Plotnick et al., 1993;
Baveye et al., 2008; Przemyslaw, 2009). We reproduce it briefly
within the context of binary images.

A box of size r is positioned at the origin of the binary image. As
the box moves (e.g. moving window) through the image, it is cal-
culated the number, n, of black pixels within the box at each posi-
tion (let us assign a “mass”, m, to this box). This procedure renders
a frequency distribution function n(m,r) which is converted into a
probability distribution function P(m,r) after dividing by the total
number of boxes N(r) of size r. Now, the first (Q;) and second
(Q») order statistics of the distribution can be determined as:

Q(1) =) mP(m,r) (7)
Q(2) =) m’P(m,r) 8)
The lacunarity for the specific box size was computed as:

_ S m2P(m,r)
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Note that for a non-lacunar structure (e.g. translationally invari-
ant) A(r) = 1, which suggests that lacunarity is statistically a mea-
sure of the distribution width (Baveye et al., 2008).

An interesting question refers to the scaling of A(r) as a Pareto
law of r.

A(r) = AP (10)

Here we interpret A; as the lacunarity at a unit scale while b is a
scaling exponent. Both, 4; and b can be estimated from the log-
log transformation:

log A(r) = log A; — blogr (11)

2.4. Scale-dependent Shannon entropy

The distribution of white/black pixels within a 2-dimensional
soil image can be very heterogeneous. In fact, Shannon entropy
might be an interesting informational measure of the effective
measure of the investigated distribution. Here, one takes the
advantage that a soil image can be partitioned into several boxes
of sizes ry,13,...,1n.

For discrete distributions, the representation of the Shannon en-
tropy as a function of the box size, r, is:

S(r) = =) _pi(r) logpi(r) (12)
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