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SUMMARY

River flow forecasting depends on land-atmosphere coupled processes, and is relevant to hydrological
applications and land-ocean coupling. A toy model is developed here for monthly river flow forecasting
using the river flow and river basin averaged precipitation in prior month. Model coefficients are cali-
brated for each month using historical data. The toy model is based on water balance, easy to use and
reproduce, and robust to calibrate with a short period of data. For five major rivers in the world, its results
agree with observations very well. Its prediction uncertainty can be quantified using the model’s error
statistics or using a dynamic approach, but not by the dispersion of 10,000 ensemble members with dif-
ferent sets of coefficients in the model. Its results are much better than those from a physically based land
model even after the mean bias correction. The toy model and a standard neural network available from
the MATLAB give similar results, but the latter is more sensitive to the length of calibration period. For the
monthly prediction of river flow with a strong seasonal cycle, a modified Nash-Sutcliffe coefficient of effi-
ciency is introduced and is found to be more reliable in model evaluations than the original coefficient of
efficiency or the correlation coefficient.

Modified Nash-Sutcliffe coefficient of
efficiency

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

River flow forecasting is one of the essential issues in applied
hydrology; e.g., for water resources management and flood control
(Nash and Sutcliffe, 1970). Discharges from major rivers also pro-
vide significant freshwater at the mouth of these rivers to the
oceans. These discharges balance the freshwater loss due to ocean
surface evaporation and affect regional ocean circulations through
changes in density. Furthermore, they bring large amounts of par-
ticulate and dissolved minerals and nutrients to the oceans and
hence affect the global biogeochemical cycles (Dai et al., 2009).

In general, river flow forecasting depends on land-atmosphere
interactions. Precipitation and snowmelt represent the natural
source of water in the river, while evapotranspiration is the sink.
Human activities (e.g., irrigation; flow regulation due to dam and
reservoir operations) represent additional source and sink. River
flow is also affected by the three-dimensional movement of soil
water which is dependent on many factors such as the topography,
soil texture, vegetation cover, and groundwater aquifers. Physi-
cally-based land surface models or hydrological models along with
river routing schemes attempt to explicitly simulate most of these
processes (Lohmann et al., 2004). This approach has also been used
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recently in the ensemble streamflow prediction system developed
by the US National Weather Service for water resources outlook
(including the monthly and seasonal streamflow outlook) (Noel
et al,, 2010).

Recognizing the lack of comprehensive data that are required
for physically-based models, a variety of data-driven models have
also been used for river flow forecasting, among which an artificial
neural network (Karunanithi et al., 1994; Hsu et al., 1995) is the
most widely used. However, the network structure, including the
number of hidden nodes, is difficult to determine in general and
has to be developed through a trial-and-error approach.

While progress has been continuously made in both land mod-
eling and neural network, here we take a very different approach
by combining the strengths of land modeling (i.e., physically-based)
and neural network (i.e., data-driven) to develop a simple nonlinear
model. This physically-based and data-driven model contains a sin-
gle equation for the river flow, and hence is referred to as a toy mod-
el. The goal of this paper is to develop such a toy model and
compare it with a land surface model and a neural network using
observations over five major rivers (see Table 1) in the world.

2. Model descriptions
2.1. The toy model

Based on water balance, the river flow F (km? or billion cubic
meters) can be predicted from
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Table 1

Station information. Lat/Lon: latitude/longitude; Cal/Val: calibration/validation; Fy,. (km?/month) and P,,. (mm/month): average river flow and precipitation for the whole

period.
River Station Lat/Lon Cal/Val periods Fave Paye
Mississippi Vicksburg 32.3°N/90.9 °W 1932-1981/1982-1998 44.89 89.18
Nile El-Ekhsase 29.7°N/31.3 °E 1948-1987/1988-2003 1.45 0.53
Yangtze Datong 30.8°N/117.6 °E 1901-1943/1946-2000 76.26 57.65
Amazon Obidos 1.95 °S/55.5 °W 1928-1977/1978-2006 450.81 450.81
Colorado Below Hoover Dam 36.0 °N/114.7 °W 1935-1984/1985-2005 1.04 8.82

dF 2.2. Neural network

g =P =)= 7F M

where P is the observed monthly precipitation (including rainfall
and snowfall) over the river basin (mm/month), and c¢ includes
evapotranspiration and snowfall (represented by positive values)
as well as snowmelt (represented by negative values) (mm/month).
Instead of explicitly computing ¢, we determine it for each month
through calibration. The coefficient o provides the conversion be-
tween the water input over a river basin and the river flow. It also
includes human activities (such as irrigation and flow regulation)
that are not explicitly modeled. The first term on the right-hand
side represents the net water input to river flow. The last term rep-
resents the river water level recession. If y is a constant, 1/ would
represent the e-folding time of the recession. In general, y does not
need to be a constant and is assumed to be

Y= ﬁ(F/Faue)d (2)

where F,,. refers to the climatological average of F (see Table 1), and
coefficient  (month™') and exponent d are determined for each
month.

Egs. (1) and (2) can be discretized as

Fn+1_Fn

p— dﬂ
At = OCn(Pn - Cn) - ﬁn(Fn/Fave) Fn+1 (3)

where the subscript n refers to month and At refers to the time step
of 1 month. Assuming a, = o,,At, and b, = B,At, Eq. (3) can be rear-
ranged as

_ an(Py — cy) + Fy
14 by (Fa/Fave)™

n+1

(4)

For the river flow at a particular station, variables a,, b,, c,;, and d, in
Eq. (4) are calibrated for each month using historical flow data.
These values are independent of years, and their constraints in-
clude: a, and b, are positive, ¢, can be positive (evapotranspiration
or snowfall) or negative (snowmelt), and d, is between 0 and 1.

The range and increment for a, and c, differ across rivers
according to the climatological flow and precipitation characteris-
tics, such as the average, minimum, and maximum values. For
example, the calibration for the Mississippi River used values from
0.15 to 1.62 (km> month/mm) for a, (divided into 100 evenly
spaced values), and from —83.0 to 218.5 (mm/month) (divided into
70 evenly spaced values) for c,, while for the Amazon River a, var-
ies from 0.23 to 2.58 (km> month/mm) and c, varies from —335.9
to 884.0 (mm/month). The range and increment of b, or d, are the
same across stations (b,: from 0 to 2.98 with 0.02 increment; d,:
from O to 1 with 0.1 increment). Calibration is done simply by eval-
uating the monthly forecast using Eq. (4) with every combination
of assignments to the variables (out of about 1.2 x 107 total com-
binations). The chosen values for each month would minimize
the mean square error for that month during the calibration period.
Results are insensitive to the exact increment for each variable (not
shown).

There are numerous neural network models used for river flow
forecasting (e.g., El-Shafie and Noureldin, 2011; Nilsson et al.,
2006). Here we use the standard multilayer perceptron (MLP) neu-
ral network, which is the most commonly used and consists of
multiple layers: an input layer, output layer, and one or more “hid-
den” layers. The software is available from the MATLAB Neural
Network Toolbox (http://www.mathworks.com/products/neural-
net/).

The input layer includes multiple variables (or nodes) such as
monthly river flow and precipitation as described below. Only
one hidden layer with multiple nodes is used here with each node
depending on the nodes in the input layer using different transfer
functions. The output layer contains only one node which is com-
puted using nodes in the hidden layer through different transfer
functions.

The inputs to the network can be determined through cross-
correlation analysis of the historical flow data with itself and with
other data (El-Shafie and Noureldin, 2011). For our cases, the
chosen input values (for predicting river flow at month n+ 1) in-
clude river flow at months n and n — 1, and precipitation at month
n. Furthermore, because there is a significant seasonal variation of
river flow, pairs of values from the sine and cosine functions of the
seasonal cycle (Nilsson et al., 2006) are used as input variables as
well. The calibration and validation periods are the same as those
for the toy model.

The optimal number of nodes in the hidden layer and the trans-
fer function are determined through trial and error using various
algorithms available from the MATLAB. For our cases, log sigmoid
(for the Yangtze River) and tangent sigmoid (for other four rivers)
transfer functions are used. The number of hidden nodes also var-
ies from 5 for the Yangtze and 6 for the Mississippi to 10 for other
three rivers. The Bayesian Regularization algorithm is used for
training.

2.3. Community Land Model (CLM4)

The Community Land Model (CLM4) (Lawrence et al., 2011) is
the land component used in the Community Earth System Model.
Biogeophysical processes simulated by CLM4 include solar and
longwave radiation interactions with vegetation canopy and soil,
turbulent fluxes from canopy and soil, heat transfer in soil and
snow, hydrology of canopy, soil, and snow, and stomatal physiol-
ogy and photosynthesis.

For the offline CLM4 simulations, 3-hourly atmospheric forcing
data of downward solar radiation, downward longwave radiation,
rainfall and snowfall, wind, temperature, and humidity are used
to produce surface turbulent and radiative fluxes for coupling to
the atmosphere, to produce vertical distribution of soil tempera-
ture and moisture for coupling to ecosystem dynamics, and to pro-
duce surface and subsurface runoff for coupling to the oceans.
Specifically, soil water removed from the model runoff is moved
horizontally in a simple routing scheme (Lawrence et al., 2011).
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