

Available online at www.sciencedirect.com





Expo. Math. 31 (2013) 385-391

www.elsevier.com/locate/exmath

## A characterization of Euler's constant

Horst Alzer

Received 10 December 2012; received in revised form 19 February 2013

#### Abstract

We prove the following theorem. Let  $\alpha$  and  $\beta$  be real numbers. The inequality

 $\Gamma(x^{\alpha} + y^{\beta}) \le \Gamma\Big(\Gamma(x) + \Gamma(y)\Big)$ 

holds for all positive real numbers x and y if and only if  $\alpha = \beta = -\gamma$ . Here,  $\Gamma$  and  $\gamma = 0.57721...$  denote Euler's gamma function and Euler's constant, respectively. © 2013 Elsevier GmbH. All rights reserved.

MSC 2010: primary 33B15; secondary 39B62

Keywords: Euler's constant; Gamma function; Functional inequalities

## 1. Introduction

The classical gamma function, introduced by L. Euler in 1729, is defined for x > 0 by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt = \frac{1}{x} \prod_{k=1}^\infty \left\{ \left( 1 + \frac{1}{k} \right)^x \left( 1 + \frac{x}{k} \right)^{-1} \right\}.$$

In view of its importance in many mathematical branches as well as in related fields, the  $\Gamma$ -function has been the subject of intensive research. The main properties of the gamma function and its relatives are collected in, for instance, [1, Chapter 6]. Remarkable historical comments on this subject can be found in [2,3,6,7,11]. We also refer the reader to Sándor's detailed bibliography on the gamma function; see [10].

Our work has been motivated by an interesting research paper published by Monreal and Tomás [9] in 1998. In this article, the authors study several functional equations (in

E-mail address: H.Alzer@gmx.de.

<sup>0723-0869/\$ -</sup> see front matter © 2013 Elsevier GmbH. All rights reserved. http://dx.doi.org/10.1016/j.exmath.2013.06.002

one and two variables) arising in computer graphics. One of these equations is

$$f(x+y) = f(f(x) + f(y)).$$

We investigate the functional inequality

$$\Gamma(x^{\alpha} + y^{\beta}) \le \Gamma(\Gamma(x) + \Gamma(y)).$$
(1.1)

More precisely, we ask for all real parameters  $\alpha$  and  $\beta$  such that (1.1) is valid for all positive numbers x and y. It turns out that the answer to this question leads to a new characterization of the famous Euler constant  $\gamma$ . Indeed, in Section 3 we show that (1.1) is valid for all x, y > 0 if and only if  $\alpha = \beta = -\gamma$ .

The constant  $\gamma$ , introduced by Euler in 1734, is defined by the limit

$$\gamma = \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \log n \right) = 0.57721 \dots$$

It appears in several mathematical areas like analysis and number theory. Numerous series and integral representations for  $\gamma$  are known in the literature. A famous open problem is to prove that  $\gamma$  is an irrational number. The connection between the gamma function and  $\gamma$  is given by the formula  $\Gamma'(1) = -\gamma$ . Much information on Euler's constant can be found in the survey paper [4] and in the monographs [5,8].

The numerical values in this paper have been calculated via the computer program Maple V, Release 5.1.

### 2. Lemmas

Throughout this paper, we denote by  $x_0 = 1.46163...$  the only positive zero of  $\psi = \Gamma' / \Gamma$ . In order to prove our main result we need some inequalities for the gamma function. These inequalities are given in the following three lemmas.

**Lemma 1.** For all x > 0 we have

$$x^{-\gamma} \le \Gamma(x) \tag{2.1}$$

with equality holding if and only if x = 1.

**Proof.** We define for x > 0

 $g(x) = \log \Gamma(x) + \gamma \log x.$ 

Then, we obtain

$$g'(x) = \psi(x) + \frac{\gamma}{x}.$$

Using the integral representation

$$\psi^{(n)}(x) = (-1)^{n+1} \int_0^\infty e^{-xt} \frac{t^n}{1 - e^{-t}} dt \quad (n \in \mathbf{N}; x > 0)$$

386

Download English Version:

# https://daneshyari.com/en/article/6414083

Download Persian Version:

https://daneshyari.com/article/6414083

Daneshyari.com