ScienceDirect

Expositiones Mathematicae
www.elsevier.com/locate/exmath

A characterization of Euler's constant

Horst Alzer

Received 10 December 2012; received in revised form 19 February 2013

Abstract

We prove the following theorem. Let α and β be real numbers. The inequality $$
\Gamma\left(x^{\alpha}+y^{\beta}\right) \leq \Gamma(\Gamma(x)+\Gamma(y))
$$ holds for all positive real numbers x and y if and only if $\alpha=\beta=-\gamma$. Here, Γ and $\gamma=0.57721 \ldots$ denote Euler's gamma function and Euler's constant, respectively. © 2013 Elsevier GmbH . All rights reserved.

MSC 2010: primary 33B15; secondary 39B62
Keywords: Euler's constant; Gamma function; Functional inequalities

1. Introduction

The classical gamma function, introduced by L. Euler in 1729 , is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t=\frac{1}{x} \prod_{k=1}^{\infty}\left\{\left(1+\frac{1}{k}\right)^{x}\left(1+\frac{x}{k}\right)^{-1}\right\}
$$

In view of its importance in many mathematical branches as well as in related fields, the Γ-function has been the subject of intensive research. The main properties of the gamma function and its relatives are collected in, for instance, [1, Chapter 6]. Remarkable historical comments on this subject can be found in $[2,3,6,7,11]$. We also refer the reader to Sándor's detailed bibliography on the gamma function; see [10].

Our work has been motivated by an interesting research paper published by Monreal and Tomás [9] in 1998. In this article, the authors study several functional equations (in

[^0]one and two variables) arising in computer graphics. One of these equations is
$$
f(x+y)=f(f(x)+f(y)) .
$$

We investigate the functional inequality

$$
\begin{equation*}
\Gamma\left(x^{\alpha}+y^{\beta}\right) \leq \Gamma(\Gamma(x)+\Gamma(y)) \tag{1.1}
\end{equation*}
$$

More precisely, we ask for all real parameters α and β such that (1.1) is valid for all positive numbers x and y. It turns out that the answer to this question leads to a new characterization of the famous Euler constant γ. Indeed, in Section 3 we show that (1.1) is valid for all $x, y>0$ if and only if $\alpha=\beta=-\gamma$.

The constant γ, introduced by Euler in 1734, is defined by the limit

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)=0.57721 \ldots
$$

It appears in several mathematical areas like analysis and number theory. Numerous series and integral representations for γ are known in the literature. A famous open problem is to prove that γ is an irrational number. The connection between the gamma function and γ is given by the formula $\Gamma^{\prime}(1)=-\gamma$. Much information on Euler's constant can be found in the survey paper [4] and in the monographs [5,8].

The numerical values in this paper have been calculated via the computer program Maple V, Release 5.1.

2. Lemmas

Throughout this paper, we denote by $x_{0}=1.46163 \ldots$ the only positive zero of $\psi=\Gamma^{\prime} / \Gamma$. In order to prove our main result we need some inequalities for the gamma function. These inequalities are given in the following three lemmas.

Lemma 1. For all $x>0$ we have

$$
\begin{equation*}
x^{-\gamma} \leq \Gamma(x) \tag{2.1}
\end{equation*}
$$

with equality holding if and only if $x=1$.
Proof. We define for $x>0$

$$
g(x)=\log \Gamma(x)+\gamma \log x .
$$

Then, we obtain

$$
g^{\prime}(x)=\psi(x)+\frac{\gamma}{x} .
$$

Using the integral representation

$$
\psi^{(n)}(x)=(-1)^{n+1} \int_{0}^{\infty} e^{-x t} \frac{t^{n}}{1-e^{-t}} d t \quad(n \in \mathbf{N} ; x>0)
$$

https://daneshyari.com/en/article/6414083

Download Persian Version:
https://daneshyari.com/article/6414083

Daneshyari.com

[^0]: E-mail address: H.Alzer@gmx.de.
 0723-0869/\$ - see front matter (c) 2013 Elsevier GmbH. All rights reserved.
 http://dx.doi.org/10.1016/j.exmath.2013.06.002

