

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Type A blocks of super category $\mathcal{O}^{\,\,\!\!\!\!/}$

Jonathan Brundan*, Nicholas Davidson

ARTICLE INFO

Article history: Received 24 June 2016 Available online 5 December 2016 Communicated by Masaki Kashiwara

Keywords: Lie superalgebras Category \mathcal{O}

ABSTRACT

We show that every block of category $\mathcal O$ for the general linear Lie superalgebra $\mathfrak{gl}_{m|n}(\Bbbk)$ is equivalent to some corresponding block of category $\mathcal O$ for the queer Lie superalgebra $\mathfrak{q}_{m+n}(\Bbbk)$. This implies the truth of the Kazhdan–Lusztig conjecture for the so-called type A blocks of category $\mathcal O$ for the queer Lie superalgebra as formulated by Cheng, Kwon and Wang. \odot 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we study the analog of the BGG category \mathcal{O} for the Lie superalgebra $\mathfrak{q}_n(\mathbb{k})$. Recent work of Chen [11] has reduced most questions about this category just to the study of three particular types of block, which we refer to here as the type A, type B and type C blocks. Type B blocks (which correspond to integral weights) were investigated already by the first author in [2], leading to a Kazhdan–Lusztig conjecture for characters of irreducibles in such blocks in terms of certain canonical bases for the quantum group of type B_{∞} . In [14], Cheng, Kwon and Wang formulated analogous conjectures for the type A blocks (defined below) and the type C blocks (which correspond to half-integral weights) in terms of canonical bases of quantum groups of types A_{∞} and C_{∞} , respectively.

E-mail addresses: brundan@uoregon.edu (J. Brundan), njd@ou.edu (N. Davidson).

^{*} Research supported in part by NSF grant DMS-1161094.

^{*} Corresponding author.

The main goal of the article is to prove the Cheng–Kwon–Wang conjecture for type A blocks [14, Conjecture 5.14]. To do this, we use some tools from higher representation theory to establish an equivalence of categories between the type A blocks of category \mathcal{O} for the Lie superalgebra $\mathfrak{q}_n(\mathbb{k})$ and integral blocks of category \mathcal{O} for a general linear Lie superalgebra. This reduces the Cheng–Kwon–Wang conjecture for type A blocks to the Kazhdan–Lusztig conjecture of [1], which was proved already in [15,8].

Regarding the types B and C conjectures, Tsuchioka discovered in 2010 that the type B canonical bases considered in [2] fail to satisfy appropriate positivity properties, so that the conjecture from [2] is certainly false. Moreover, after the first version of [14] appeared, Tsuchioka pointed out similar issues with the type C canonical bases studied in [14], so that the Cheng–Kwon–Wang conjecture for type C blocks as formulated in the first version of their article [14, Conjecture 5.10] also seems likely to be incorrect.

In fact, the techniques developed in this article can be applied also to the study of the type C blocks. This will be spelled out in a sequel to this paper [4]. In this sequel, we prove a modified version of the Cheng–Kwon–Wang conjecture for type C blocks: one needs to replace Lusztig's canonical basis with Webster's "orthodox basis" arising from the indecomposable projective modules of the tensor product algebras of [29, §4]. This modified conjecture was proposed independently by Cheng, Kwon and Wang in a revision of their article [14, Conjecture 5.12]. It is not as satisfactory as the situation for type A blocks, since there is no elementary algorithm to compute Webster's basis explicitly (unlike the canonical basis). Also in the sequel, we will prove [14, Conjecture 5.13], and settle [14, Question 5.1] by identifying the category of finite-dimensional half-integer weight representations of $\mathfrak{q}_n(\mathbb{R})$ with a previously known highest weight category (as suggested by [13, Remark 6.7]).

There is more to be said about type B blocks too; in fact, these are the most intriguing of all. Whereas the types A and C blocks carry the additional structure of tensor product categorifications in the sense of [24,8] for the infinite rank Kac–Moody algebras of types A_{∞} and C_{∞} , respectively, the type B blocks produce an example of a tensor product categorification of *odd* type B_{∞} , i.e. one needs a *super* Kac–Moody 2-category in the sense of [6]. This will be developed in subsequent work by the second author.

In the remainder of the introduction, we are going to formulate our main result for type A blocks in more detail. To do this, we first briefly recall some basic notions of superalgebra. Let \mathbb{k} be a ground field which is algebraically closed of characteristic zero, and fix a choice of $\sqrt{-1} \in \mathbb{k}$. We adopt the language of [5, Definition 1.1]:

- A supercategory is a category enriched in the symmetric monoidal category of vector superspaces, i.e. the category of $\mathbb{Z}/2$ -graded vector spaces over \mathbb{k} with morphisms that are parity-preserving linear maps.
- Any morphism in a supercategory decomposes uniquely into an even and an odd morphism as $f = f_{\bar{0}} + f_{\bar{1}}$. A *superfunctor* between supercategories means a \mathbb{k} -linear functor which preserves the parities of morphisms.

Download English Version:

https://daneshyari.com/en/article/6414184

Download Persian Version:

https://daneshyari.com/article/6414184

<u>Daneshyari.com</u>