

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Total positivity, Schubert positivity, and geometric Satake

Thomas Lam^{a,*,1}, Konstanze Rietsch^{b,2}

- ^a Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- ^b King's College London, United Kingdom

ARTICLE INFO

Article history: Received 7 March 2015 Available online 1 June 2016 Communicated by Shrawan Kumar

MSC: 20G20 15A45

14N35 14N15

Keywords: Flag varieties Quantum cohomology Total positivity

ABSTRACT

Let G be a simple, simply-connected complex algebraic group, and let $X \subset G^{\vee}$ be the centralizer of a principal nilpotent. Ginzburg and Peterson independently related the ring of functions on X with the homology ring of the affine Grassmannian Gr_G . Peterson furthermore connected X to the quantum cohomology rings of partial flag varieties G/P.

In this paper we study three notions of positivity for X: (1) Schubert positivity arising via Peterson's work, (2) Lusztig's total positivity and (3) Mirković–Vilonen positivity obtained from the MV-cycles in Gr_G . The first main theorem establishes that these three notions of positivity coincide. Our second main theorem proves a parametrization of the totally nonnegative part of X, confirming a conjecture of the second author.

In type A the parametrization and relationship with Schubert positivity were proved earlier by the second author. Here we tackle the general type case and also introduce a crucial new connection with the affine Grassmannian and geometric Satake correspondence.

© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: tfylam@umich.edu (T. Lam), konstanze.rietsch@kcl.ac.uk (K. Rietsch).

 $^{^{1}\,}$ TL was supported by NSF grants DMS-0901111 and DMS-1160726, and by a Sloan Fellowship.

² KR was funded by EPSRC grant EP/D071305/1.

1. Introduction

Let G be a simply connected, semisimple complex linear algebraic group, split over \mathbb{R} , and let G^{\vee} be its Langlands dual group (over \mathbb{C}). The Peterson variety \mathcal{Y} may be viewed as the compactification of the stabilizer $X := G_F^{\vee}$ of a standard principal nilpotent F in $(\mathfrak{g}^{\vee})^*$ (with respect to the coadjoint representation of G^{\vee}), which one obtains by embedding X into the Langlands dual flag variety G^{\vee}/B_-^{\vee} and taking the closure there.

Ginzburg [11] and Peterson [31] independently showed that the coordinate ring $\mathcal{O}(X)$ of the variety X was isomorphic to the homology $H_*(\operatorname{Gr}_G)$ of the affine Grassmannian Gr_G of G, and Peterson discovered moreover that the compactification $\mathcal Y$ encodes the quantum cohomology rings of all of the flag varieties G/P. Peterson's remarkable work in particular exhibited explicit homomorphisms between localizations of $qH^*(G/P,\mathbb{C})$ and $H_*(\operatorname{Gr}_G,\mathbb{C})$ taking quantum Schubert classes σ_w^P to affine homology Schubert classes ξ_x . These homomorphisms were verified in [24].

The first aim of this paper is to compare different notions of positivity for the real points of X: (i) the affine Schubert positive part $X_{>0}^{\rm af}$ where affine Schubert classes ξ_x take positive values via Ginzburg and Peterson's isomorphism $H_*(\operatorname{Gr}_G) \simeq \mathcal{O}(X)$; (ii) the totally positive part $X_{>0} := X \cap U_{-,>0}^{\vee}$ in the sense of Lusztig [26]; and (iii) the Mirković-Vilonen positive part $X_{>0}^{\rm MV}$ where the classes of the Mirković-Vilonen cycles from the geometric Satake correspondence [29] take positive values.

Our first main theorem (Theorem 7.1) states that these three notions of positivity coincide. For G of type A the coincidence $X_{>0}^{af} = X_{>0}$ was already established in [35], where instead of $X_{>0}^{af}$, the notion of quantum Schubert positivity was used. In general quantum Schubert positivity is possibly weaker than affine Schubert positivity. It follows from [35] that the notions coincide in type A, and we verify that they coincide in type C in Appendix A.

The notion of Mirković–Vilonen positivity does not appear to have been studied in the literature before. We note that the MV-basis is expected to coincide with Lusztig's semicanonical basis which is distinct from the canonical basis used in Lusztig's approach to total positivity. So the coincidence $X_{>0}^{MV} = X_{>0}$ might not be immediately expected. As for the comparison $X_{>0}^{MV} = X_{>0}^{af}$ we note that the classes of MV-cycles span $H_*(Gr_G)$ over $\mathbb C$, but the $\mathbb Z$ -lattice spanned by MV-cycles is known to be strictly contained in the lattice spanned by the Schubert basis.

Our second main theorem (Theorem 7.3) is a parametrization of the totally positive $X_{\geq 0}$ and totally nonnegative $X_{\geq 0}$ parts of X. We show that they are homeomorphic to $\mathbb{R}^n_{\geq 0}$ and $\mathbb{R}^n_{\geq 0}$ respectively. This was conjectured by the second author in [35] where it was established in type A. In type A_n we have that $X = G_F^{\vee}$ is the n-dimensional subgroup of lower-triangular unipotent Toeplitz matrices, and thus the parametrization $X_{\geq 0} \simeq \mathbb{R}^n_{\geq 0}$ is a "finite-dimensional" analogue of the Edrei-Thoma theorem [7] parametrizing infinite totally nonnegative Toeplitz matrices, appearing in the classification of the characters of the infinite symmetric group. The results of this article give an arbitrary type generalization.

Download English Version:

https://daneshyari.com/en/article/6414240

Download Persian Version:

https://daneshyari.com/article/6414240

Daneshyari.com