Properly integral polynomials over the ring of integer-valued polynomials on a matrix ring

Giulio Peruginelli ${ }^{\text {a }}$, Nicholas J. Werner ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Padova, Via Trieste, 6335121
Padova, Italy
${ }^{\text {b }}$ Department of Mathematics, Computer and Information Science, SUNY College at Old Westbury, Old Westbury, NY 11568, United States

A R T I C L E I N F O

Article history:

Received 29 June 2015
Available online 1 June 2016
Communicated by Luchezar L.
Avramov

MSC:

primary 13 F 20
secondary 13B22, 11C99
Keywords:
Integer-valued polynomial
Integral closure
Null ideal
Matrix ring
P-sequence

A B S T R A C T

Let D be a domain with fraction field K, and let $M_{n}(D)$ be the ring of $n \times n$ matrices with entries in D. The ring of integervalued polynomials on the matrix ring $M_{n}(D)$, denoted $\operatorname{Int}_{K}\left(M_{n}(D)\right)$, consists of those polynomials in $K[x]$ that map matrices in $M_{n}(D)$ back to $M_{n}(D)$ under evaluation. It has been known for some time that $\operatorname{Int}_{\mathbb{Q}}\left(M_{n}(\mathbb{Z})\right)$ is not integrally closed. However, it was only recently that an example of a polynomial in the integral closure of $\operatorname{Int}_{\mathbb{Q}}\left(M_{n}(\mathbb{Z})\right)$ but not in the ring itself appeared in the literature, and the published example is specific to the case $n=2$. In this paper, we give a construction that produces polynomials that are integral over $\operatorname{Int}_{K}\left(M_{n}(D)\right)$ but are not in the ring itself, where D is a Dedekind domain with finite residue fields and $n \geq 2$ is arbitrary. We also show how our general example is related to P-sequences for $\operatorname{Int}_{K}\left(M_{n}(D)\right)$ and its integral closure in the case where D is a discrete valuation ring.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. Introduction

When D is a domain with field of fractions K, the ring of integer-valued polynomials on D is $\operatorname{Int}(D)=\{f \in K[x] \mid f(D) \subseteq D\}$. Such rings have been extensively studied over the past several decades; the reader is referred to [5] for standard results on these objects. More recently, attention has turned to the consideration of integer-valued polynomials on algebras $[6,8-12,17,18,20-23]$. The typical approach for this construction is to take a torsion-free D-algebra A that is finitely generated as a D-module and such that $A \cap K=D$. Then, we define $\operatorname{Int}_{K}(A)$ to be the set of polynomials in $K[x]$ that map elements of A back to A under evaluation. That is, $\operatorname{Int}_{K}(A):=\{f \in K[x] \mid f(A) \subseteq A\}$, which is a subring of $\operatorname{Int}(D)$. (Technically, evaluation of $f \in K[x]$ at elements of A is performed in the tensor product $K \otimes_{D} A$ by associating K and A with their canonical images $K \otimes 1$ and $1 \otimes A$. In practice, however, it is usually clear how to perform the evaluation without the formality of tensor products.)

Depending on the choice of A, the $\operatorname{ring} \operatorname{Int}_{K}(A)$ can exhibit similarities to, or stark differences from, $\operatorname{Int}(D)$. For instance, if A is the ring of integers of a number field (viewed as a \mathbb{Z}-algebra), then $\operatorname{Int}_{\mathbb{Q}}(A)$ is-like $\operatorname{Int}(\mathbb{Z})$-a Prüfer domain [17, Thm. 3.7], hence is integrally closed. In contrast, when $A=M_{n}(\mathbb{Z})$ is the algebra of $n \times n$ matrices with entries in $\mathbb{Z}, \operatorname{Int}_{\mathbb{Q}}(A)$ is not integrally closed (although its integral closure is a Prüfer domain) [17, Sec. 4]. In a more general setting, it is known [5, Thm. VI.1.7] that if D is a Dedekind domain with finite residue fields, then $\operatorname{Int}(D)$ is a Prüfer domain, and so is integrally closed. The motivation for this paper was to show, by giving a form for a general counterexample, that $\operatorname{Int}_{K}\left(M_{n}(D)\right)$ is not integrally closed. In this vein, we make the following definition.

Definition 1.1. A polynomial $f \in K[x]$ will be called properly integral over $\operatorname{Int}_{K}(A)$ if f lies in the integral closure of $\operatorname{Int}_{K}(A)$, but $f \notin \operatorname{Int}_{K}(A)$.

Note that the integral closure of $\operatorname{Int}_{K}(A)$ in its field of fractions $K(x)$ is contained in $K[x]$, so that $\operatorname{Int}_{K}(A)$ is integrally closed if and only if there are no properly integral polynomials over $\operatorname{Int}_{K}(A)$. It has been known for some time that $\operatorname{Int}_{\mathbb{Q}}\left(M_{n}(\mathbb{Z})\right)$ is not integrally closed. However, the first published example of a properly integral polynomial over $\operatorname{Int}_{\mathbb{Q}}\left(M_{n}(\mathbb{Z})\right)$ was given only recently by Evrard and Johnson in [9], and only for the case $n=2$. We will give a general construction for a properly integral polynomial over $\operatorname{Int}_{K}\left(M_{n}(D)\right)$, where D is a Dedekind domain with finite residue rings, and $n \geq 2$ is arbitrary.

The theorems in this paper can be seen as complementary to the work of Evrard and Johnson. Their results relied heavily on the P-orderings and P-sequences of Bhargava [4] and the generalizations of these in [15]. In the case where $D=\mathbb{Z}$, a properly integral polynomial $f(x)=g(x) / p^{k}$ (where $g \in \mathbb{Z}[x], p^{k}$ is a prime power, and p does not divide g) over $\operatorname{Int}_{\mathbb{Q}}\left(M_{n}(\mathbb{Z})\right)$ produced by using the methods and p-sequences in [9] is optimal in the sense that f has minimal degree among all properly integral polynomials of the form

https://daneshyari.com/en/article/6414241

Download Persian Version:
https://daneshyari.com/article/6414241

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gperugin@math.unipd.it (G. Peruginelli), wernern@oldwestbury.edu (N.J. Werner).

