Generating minimally transitive permutation groups

Gareth M. Tracey
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

A R T I C L E I N F O

Article history:

Received 13 June 2015
Available online 1 June 2016
Communicated by Martin Liebeck

Keywords:

Group theory
Finite permutation groups
Minimal generation of finite groups
Crown-based powers
Finite simple groups

Abstract

We prove that each minimally transitive permutation group of degree n can be generated by $\mu(n)+1$ elements, where $\mu(n):=$ $\max \left\{m\right.$: there exists a prime p such that p^{m} divides $\left.n\right\}$.

© 2016 Published by Elsevier Inc.

1. Introduction

A transitive permutation group $G \leq S_{n}$ is called minimally transitive if every proper subgroup of G is intransitive. In this paper, we consider the minimal number of elements $d(G)$ required to generate such a group G, in terms of its degree n. For the prime factorisation $n=\prod_{p \text { prime }} p^{n(p)}$ of n, we will write $\omega(n):=\sum_{p} n(p)$ and $\mu(n):=\max \{n(p): p$ prime $\}$.

The question of bounding $d(G)$ in terms of n was first considered by Shepperd and Wiegold in [13]; there, they prove that every minimally transitive group of degree n can

[^0]be generated by $\omega(n)$ elements. It was then suggested by Pyber (see [12]) to investigate whether or not $\mu(n)+1$ elements would always suffice. A. Lucchini gave a partial answer to this question in [9], proving that: if G is a minimally transitive group of degree n, and $\mu(n)+1$ elements are not sufficient to generate G, then $\omega(n) \geq 2$ and $d(G) \leq$ $\left\lfloor\log _{2}(\omega(n)-1)+3\right\rfloor$.

In this note, we offer a complete solution to the problem, proving
Theorem 1.1. Let G be a minimally transitive permutation group of degree n. Then $d(G) \leq \mu(n)+1$.

Our approach follows along the same lines as Lucchini's proof of the main theorem in [9]. Indeed, his methods suffice to prove Theorem 1.1 in the case when a minimal normal subgroup of G is abelian. Thus, our main efforts will be concerned with the case when a minimal normal subgroup of G is a direct product of isomorphic nonabelian simple groups. The key step in this direction is Lemma 3.1, which we prove in Section 3. We use Section 2 to outline the method of crown-based powers due to F. Dalla Volta and Lucchini; this will serve as the basis for our arguments. Finally, we prove Theorem 1.1 in Section 4.

2. Crown-based powers

In this section, we outline an approach to study the question of finding the minimal number of elements required to generate a finite group, which is due to F. Dalla Volta and A. Lucchini. So let G be a finite group, with $d(G)=d>2$, and let M be a normal subgroup of G, maximal with the property that $d(G / M)=d$. Then G / M needs more generators than any proper quotient of G / M, and hence, as we shall see below, G / M takes on a very particular structure.

We describe this structure as follows: let L be a finite group, with a unique minimal normal subgroup N. If N is abelian, then assume further that N is complemented in L. Now, for a positive integer k, set L_{k} to be the subgroup of the direct product L^{k} defined as follows

$$
L_{k}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): x_{i} \in L, N x_{i}=N x_{j} \text { for all } i, j\right\}
$$

Equivalently, $L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}$, where $\operatorname{diag}\left(L^{k}\right)$ denotes the diagonal subgroup of L^{k}. The group L_{k} is called the crown-based power of L of size k.

We can now state the theorem of Dalla Volta and Lucchini.

Theorem 2.1 ([2], Theorem 1.4). Let G be a finite group, with $d(G) \geq 3$, which requires more generators than any of its proper quotients. Then there exists a finite group L, with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and a positive integer $k \geq 2$, such that $G \cong L_{k}$.

https://daneshyari.com/en/article/6414250

Download Persian Version:
https://daneshyari.com/article/6414250

Daneshyari.com

[^0]: E-mail address: G.M.Tracey@warwick.ac.uk.

