

Contents lists available at ScienceDirect

## Journal of Algebra

www.elsevier.com/locate/jalgebra



# Non-vanishing elements in finite groups



### Julian Brough

FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

#### ARTICLE INFO

Article history: Received 19 March 2016 Available online 1 June 2016 Communicated by Michel Broué

Keywords: Finite groups Characters Non-vanishing elements

#### ABSTRACT

Many results have been established about determining whether or not an element evaluates to zero on an irreducible character of a group. In this note it is shown that if a group G has a normal p-subgroup N, and  $x \in N$  lies in the centre of a Sylow p-subgroup of G, then no irreducible character of G vanishes on x.

© 2016 Elsevier Inc. All rights reserved.

Let G be a finite group and  $\chi \in \operatorname{Irr}(G)$ , an irreducible character of G. A classical result of Burnside says if  $\chi$  is non-linear, that is  $\chi(1) \neq 1$ , then there is at least one element g in G such that  $\chi(g) = 0$ . If one considers conjugacy classes, a natural dual to irreducible characters, then g being a central element in G implies that  $|\chi(g)| = \chi(1)$  and thus g does not evaluate to zero on any irreducible character. However, a non-central element g may also not evaluate to zero on any irreducible character, for example the 3-cycles in  $\operatorname{Sym}(3)$ . Elements which do not evaluate to zero on any irreducible character of a group are called non-vanishing. The study of non-vanishing elements was first introduced in [4], where the authors showed for soluble groups any non-vanishing element g in a group G must reduce to a 2-element in G/F(G). In [2] this result was generalised to any group,

in particular it was shown that if an element g is non-vanishing in G and the order of g is coprime to 6, then g lies in F(G).

We note that there has been a recent interest in the literature asking about how much group structure is determined by the vanishing conjugacy class sizes. In particular, in [3] and [1], the authors have generalised arithmetical results upon conjugacy classes to vanishing conjugacy classes. Thus the determination of non-vanishing elements would provide further machinery for this recent topic of research.

The aim of this note is to generalise a result appearing in [4], that is [4, Theorem A], which says if a group has a normal Sylow p-subgroup P, then all the elements in Z(P) are non-vanishing. A variant of this result was considered in [8], where the author showed that if a group has a normal elementary abelian p-subgroup A and P is a Sylow p-subgroup, then the elements in  $Z(P) \cap A$  are non-vanishing. In particular, we first show that the result of [8] holds if A is a normal abelian p-subgroup. From this we deduce the result holds if A is a normal p-subgroup. Note that from this new result, [4, Theorem A] follows by setting A = P.

**Theorem.** Let G be a finite group which contains a non-trivial normal p-subgroup N for p a prime. Then any  $x \in N$  such that p does not divide  $|G: C_G(x)|$  is non-vanishing in G.

First we give the following preliminary result which considers when a sum of roots of unity is equal to zero.

**Lemma.** Let  $\Xi := \{\xi_1, \dots, \xi_t\}$  be a set of  $p^n$ -th roots of unity, for some number  $n \ge 1$ , such that  $\xi_1 + \dots + \xi_t = 0$ . Then the sum can be split into sums of the form  $\xi + \xi^{p^{a-1}+1} + \dots + \xi^{(p-1)p^{a-1}+1}$ , for possibly various numbers  $1 \le a \le n$ , where  $\xi^{kp^{a-1}+1} \in \Xi$  for  $0 \le k \le p-1$  and each such subsum equals zero.

**Proof.** Let  $\xi$  be an element in  $\{\xi_i \mid 1 \leq i \leq t\}$  of maximal order, i.e.  $\xi$  is a primitive  $p^a$ -th root of unity and  $\xi_i^{p^a} = 1$  for all i. It is enough to prove that  $\xi, \xi^{p^{a-1}+1}, \dots, \xi^{(p-1)p^{a-1}+1} \in \Xi$ , as then

$$\xi + \xi^{p^{a-1}+1} + \dots + \xi^{(p-1)p^{a-1}+1} = \xi(1 + \xi^{p^{a-1}} + \dots + \xi^{(p-1)p^{a-1}}) = 0$$

and inductively from  $\Xi \setminus \{\xi, \xi^{p^{a-1}+1}, \dots \xi^{(p-1)p^{a-1}+1}\}$  repeat the argument.

Assume  $\xi_1 = \xi$ , which is a primitive  $p^a$ -th root of unity, so that each  $\xi_i$  is a power of  $\xi$ . Pick r minimal such that  $\Sigma_{j=1}^r \xi^{b_j} = 0$  with  $\xi^{b_j} \in \Xi$ , where  $b_i \leq b_{i+1} \leq p^a$  and  $b_1 = 1$ . Then it follows that  $\xi$  is a root to the polynomial  $\Sigma_{j=1}^r X^{b_j}$ . As  $\Phi_{p^a}(X) = 1 + X^{p^{a-1}} + \cdots + X^{(p-1)p^{a-1}}$  is the minimal polynomial for  $\xi$  it follows that

$$\Sigma_{j=1}^r X^{b_j} = \Phi_{p^a}(X)g(X),$$

for some polynomial  $g \in \mathbb{Z}[X]$ .

## Download English Version:

# https://daneshyari.com/en/article/6414252

Download Persian Version:

https://daneshyari.com/article/6414252

<u>Daneshyari.com</u>