Arithmetic and geometry of the Hecke groups

Cheng Lien Lang ${ }^{\text {a }}$, Mong Lung Lang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, I-Shou University, Kaohsiung, Taiwan
b Singapore 669608, Singapore

A R T I C L E I N F O

Article history:

Received 24 September 2015
Available online 1 June 2016
Communicated by Michel Broué

MSC:

11F06
20 H 10

Keywords:
Hecke groups
Congruence subgroups
Commutator subgroups
Kurosh's Theorem
Hurwitz-Nielsen realisation problem

A B S T R A C T
We study the arithmetic and geometry properties of the Hecke group G_{q}. In particular, we prove that G_{q} has a subgroup X of index d, genus g with v_{∞} cusps, and τ_{2} (resp. $v_{r_{i}}$) conjugacy classes of elliptic elements that are conjugates of S (resp. $\left.R^{q / r_{i}}\right)$ if and only if (i) $2 g-2+\tau_{2} / 2+\sum_{i=1}^{k} v_{r_{i}}\left(1-1 / r_{i}\right)+v_{\infty}=$ $d(1 / 2-1 / q)$, and (ii) $m_{0}=4 g-4+\tau_{2}+2 v_{\infty}+\sum_{i=1}^{k} v_{r_{i}}(2-$ $\left.q / r_{i}\right) \geq 0$ is a multiple of $q-2$. Note that if q is odd (resp. prime), then $m_{0} /(q-2) \in \mathbb{Z}$ (resp. $\left.\mathbb{N} \cup\{0\}\right)$ is a consequence of (i).
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Let $q \geq 3$ be an integer. The (inhomogeneous) Hecke group (see [1]) G_{q} is defined to be the maximal discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ generated by S and T, where $\lambda_{q}=2 \cos (\pi / q)$,

$$
S=\left(\begin{array}{rr}
0 & 1 \tag{1.1}\\
-1 & 0
\end{array}\right), T=\left(\begin{array}{cc}
1 & \lambda_{q} \\
0 & 1
\end{array}\right)
$$

[^0]Let $R=S T^{-1}$. Then R has order q and $\{S, R\}$ is a set of independent generators of G_{q}. Equivalently, G_{q} is a free product of $\langle S\rangle$ and $\langle R\rangle$. The main purpose of this article is to study the geometric and arithmetic properties of subgroups of finite index of G_{q}.
1.2. The set of cusps of G_{q} is $\mathbb{Q}\left[\lambda_{q}\right] \cup\{\infty\}$ if and only if $q=3,5$. We will give an inductive procedure (induction on the depth of q-gons) that enables us to generate the set of cusps of G_{q} (Lemma 3.2). As the index of G_{q} in $P S L\left(2, \mathbb{Z}\left[\lambda_{q}\right]\right)$ is infinite if $q \geq 4$, it is important to characterise members of G_{q}. A simple algorithm that determines whether a matrix of $\operatorname{PSL}\left(2, \mathbb{Z}\left[\lambda_{q}\right]\right)$ belongs to G_{q} can be found in Proposition 3.7. It is our duty to point out that Proposition 3.7 is just an easy consequence of Rosen's study of λ_{q} continued fraction expansion of real numbers (see [10]) and that members of G_{q} are completely known only if $q=4$ or 6 (see $[3,12]$ or Remark 3.9 of the current article).
1.3. A set of generators $\left\{x_{i}\right\}$ of X is called a set of independent generators if X is a free product of the cyclic groups $\left\langle x_{i}\right\rangle . G_{q}$ is a free product of $\langle S\rangle$ and $\langle R\rangle$. By Kurosh's Theorem, every subgroup X of finite index of G_{q} has a set of independent generators. Proposition 4.4 and Theorem 5.2 demonstrate how arithmetic and geometry can be combined to give an inductive procedure for finding a special polygon (fundamental domain) M_{X} and a set of independent generators I_{X} for X (the case q is a prime has been done in [6]). In particular, this is applied to the principal congruence subgroup of level 2 , the commutator subgroup G_{q}^{\prime} and subgroups of index 2 (subsection 5.4).
1.4. As a special case of the Hurwitz-Nielsen realisation problem, Millington [9] showed that as long as $d=3 \tau_{2}+4 v_{3}+12 g+6 t-12$, then the modular group G_{3} possesses a subgroup X of index d, such that $X \backslash \mathbb{H}$ has τ_{2} (resp. v_{3}) elliptic points of order 2 (resp. 3), t cusps, and genus g. We are able to generalise this result to G_{q} by studying the Hecke-Farey symbols (see Section 6). Another application of our study of the special polygons is an easy method (calculation free) that determines the permutation representation of G_{q} on G_{q} / X. As a consequence, whether X is normal can be determined easily (see subsection 7.3). In the case $q=3$, whether X is congruence can be determined as well (see subsection 7.4).

2. Tessellation of the upper half plane

Let D^{*} denote the $(2, q, \infty)$ triangle with vertices $i, e^{\pi i / q}$ and $\infty . D^{*}$ is a fundamental domain of the Coxeter group G_{q}^{*} generated by reflections along the sides of D^{*}. Hecke group G_{q} is the subgroup of index 2 consists of all the orientation preserving isometries.

Let \mathbb{H} be the union of the upper half plane and the set $\left\{g(\infty): g \in G_{q}^{*}\right\}$. The G_{q}^{*} translates of D^{*} form a tessellation \mathcal{I}^{*} of \mathbb{H} (endowed with the hyperbolic metric) by $(2, q, \infty)$ triangles. The G_{q}^{*} translates of $i, e^{\pi i / q}$ and ∞ are called even vertices, odd vertices and cusps (free vertices) of \mathcal{I}^{*} respectively. The G_{q}^{*} translates of the hyperbolic line joining i to ∞ (resp. $e^{\pi i / q}$ to ∞) are called even edges (resp. odd edges) of \mathcal{I}^{*}. The G_{q}^{*}

https://daneshyari.com/en/article/6414253

Download Persian Version:

https://daneshyari.com/article/6414253

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cllang@isu.edu.tw (C.L. Lang), lang2to46@gmail.com (M.L. Lang).

