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1. Introduction

Automorphism groups of right-angled Artin groups (or graph groups, or partially com-
mutative groups) form an interesting class of groups, as they “interpolate” between the
two extremal cases of Aut(F'), the automorphism group of a non-abelian free group, and
the general linear group GL(n,Z).
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In this paper we study the (non-)triviality of the first cohomology group of Aut(Ar)
and certain classes of its finite-index subgroups; here, Ar denotes the right-angled Artin
group defined by the simplicial graph T'. Recall that a discrete group G is said to be
virtually indicable if there exists a subgroup Gy < G of finite index with non-trivial first
cohomology group; equivalently, Gy admits a surjection onto Z. We say that a compactly
generated group G has Kazhdan’s property (T) if every unitary representation of G
that has almost invariant vectors has an invariant unit vector. Groups with Kazhdan’s
property (T) are not virtually indicable, however the converse is not true; for instance,
Aut(F3) has finite abelianization but does not enjoy property (T) [19,15,3].

As is often the case with properties of (automorphisms of) right-angled Artin groups,
whether H'(Aut(Ar),Z) vanishes or not depends on the structure of the underlying
graph I'. Below, we will identify a number of conditions on I" ensuring that Aut(Ar) has
(non-)trivial first cohomology. These conditions are phrased on the usual partial ordering
of the vertex set V(I') of I'. Namely, given vertices v,w € V(I'), we say that v < w if
lk(v) C st(w); see section 2 for an expanded definition. We write v ~ w to mean v < w
and w < wv.

1.1. Finite abelianization

We first consider a property of a graph which guarantees that the partial ordering <
is “sufficiently rich”. More concretely, we say that a simplicial graph I' has property (B)
if the following two conditions hold:

(B1) For all u,v € V(T') that are not adjacent, we have u ~ v;
(B2) For all v,w € V(I') with v < w, there exists u € V(I') such that v # v,w and
v<u<w.

We will prove that if T' has property (B) then a natural class of finite-index sub-
groups of Aut(Ar) have finite abelianization. Before we state our first result, recall
that the Torelli group ZAr is the kernel of the natural homomorphism Aut(Ar) —
Aut(H,(Ar)) = GL(n,Z) where n denotes the number of vertices of I'. In particular, we
may see Aut(Ar)/ZAr as a subgroup of GL(n,Z).

Our first result is:

Theorem 1.1. Let T’ be a simplicial graph with property (B). If G < Aut(Ar) is a finite-
index subgroup containing TAr, then H'(G,Z) = 0.

Remark 1.2. Denote by F}, the free group on k letters. As we will see in Lemma 3.1 below,
I has property (B) if and only if Apr = F,,, X ... X F,, x Z%, where nq,...,n; > 2 and
a # 2. Observe, however, that if w is a vertex corresponding to the abelian factor then
for any other vertex v there is a transvection t,,, € Aut(Ar) mapping v — vw and fixing
the rest of the generators. In particular, Aut(Ar) does not keep the factors invariant in
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