

On the first cohomology of automorphism groups of graph groups

Javier Aramayona*, Conchita Martínez-Pérez

A R T I C L E I N F O

Article history: Received 20 May 2015 Available online 5 January 2016 Communicated by Inna Capdeboscq

Keywords: Right-angled Artin group Automorphism Virtually indicable Property T

ABSTRACT

We study the (virtual) indicability of the automorphism group Aut(A_{Γ}) of the right-angled Artin group A_{Γ} associated to a simplicial graph Γ . First, we identify two conditions – denoted (B1) and (B2) – on Γ which together imply that $H^1(G, \mathbb{Z}) = 0$ for certain finite-index subgroups $G < \operatorname{Aut}(A_{\Gamma})$. On the other hand we will show that (B2) is equivalent to the matrix group $\mathcal{H} = \operatorname{Im}(\operatorname{Aut}(A_{\Gamma}) \to \operatorname{Aut}(H_1(A_{\Gamma}))) < \operatorname{GL}(n, \mathbb{Z})$ not being virtually indicable, and also to \mathcal{H} having Kazhdan's property (T). As a consequence, $\operatorname{Aut}(A_{\Gamma})$ virtually surjects onto \mathbb{Z} whenever Γ does not satisfy (B2). In addition, we give an extra property of Γ ensuring that $\operatorname{Aut}(A_{\Gamma})$ and $\operatorname{Out}(A_{\Gamma})$ virtually surject onto \mathbb{Z} . Finally, in the appendix we offer some remarks on the linearity problem for $\operatorname{Aut}(A_{\Gamma})$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Automorphism groups of right-angled Artin groups (or graph groups, or partially commutative groups) form an interesting class of groups, as they "interpolate" between the two extremal cases of $\operatorname{Aut}(F)$, the automorphism group of a non-abelian free group, and the general linear group $\operatorname{GL}(n,\mathbb{Z})$.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.11.045} 0021-8693 @ 2015 Elsevier Inc. All rights reserved.$

E-mail address: aramayona@gmail.com (J. Aramayona).

In this paper we study the (non-)triviality of the first cohomology group of $\operatorname{Aut}(A_{\Gamma})$ and certain classes of its finite-index subgroups; here, A_{Γ} denotes the right-angled Artin group defined by the simplicial graph Γ . Recall that a discrete group G is said to be *virtually indicable* if there exists a subgroup $G_0 < G$ of finite index with non-trivial first cohomology group; equivalently, G_0 admits a surjection onto \mathbb{Z} . We say that a compactly generated group G has *Kazhdan's property* (T) if every unitary representation of Gthat has almost invariant vectors has an invariant unit vector. Groups with *Kazhdan's property* (T) are not virtually indicable, however the converse is not true; for instance, $\operatorname{Aut}(F_3)$ has finite abelianization but does not enjoy property (T) [19,15,3].

As is often the case with properties of (automorphisms of) right-angled Artin groups, whether $H^1(\operatorname{Aut}(A_{\Gamma}), \mathbb{Z})$ vanishes or not depends on the structure of the underlying graph Γ . Below, we will identify a number of conditions on Γ ensuring that $\operatorname{Aut}(A_{\Gamma})$ has (non-)trivial first cohomology. These conditions are phrased on the usual partial ordering of the vertex set $V(\Gamma)$ of Γ . Namely, given vertices $v, w \in V(\Gamma)$, we say that $v \leq w$ if $\operatorname{lk}(v) \subset \operatorname{st}(w)$; see section 2 for an expanded definition. We write $v \sim w$ to mean $v \leq w$ and $w \leq v$.

1.1. Finite abelianization

We first consider a property of a graph which guarantees that the partial ordering \leq is "sufficiently rich". More concretely, we say that a simplicial graph Γ has property (B) if the following two conditions hold:

- (B1) For all $u, v \in V(\Gamma)$ that are not adjacent, we have $u \sim v$;
- (B2) For all $v, w \in V(\Gamma)$ with $v \leq w$, there exists $u \in V(\Gamma)$ such that $u \neq v, w$ and $v \leq u \leq w$.

We will prove that if Γ has property (B) then a natural class of finite-index subgroups of $\operatorname{Aut}(A_{\Gamma})$ have finite abelianization. Before we state our first result, recall that the Torelli group $\mathcal{I}A_{\Gamma}$ is the kernel of the natural homomorphism $\operatorname{Aut}(A_{\Gamma}) \to$ $\operatorname{Aut}(H_1(A_{\Gamma})) = \operatorname{GL}(n,\mathbb{Z})$ where *n* denotes the number of vertices of Γ . In particular, we may see $\operatorname{Aut}(A_{\Gamma})/\mathcal{I}A_{\Gamma}$ as a subgroup of $\operatorname{GL}(n,\mathbb{Z})$.

Our first result is:

Theorem 1.1. Let Γ be a simplicial graph with property (B). If $G < \operatorname{Aut}(A_{\Gamma})$ is a finiteindex subgroup containing $\mathcal{I}A_{\Gamma}$, then $H^1(G,\mathbb{Z}) = 0$.

Remark 1.2. Denote by F_k the free group on k letters. As we will see in Lemma 3.1 below, Γ has property (B) if and only if $A_{\Gamma} \cong F_{n_1} \times \ldots \times F_{n_k} \times \mathbb{Z}^a$, where $n_1, \ldots, n_k > 2$ and $a \neq 2$. Observe, however, that if w is a vertex corresponding to the abelian factor then for any other vertex v there is a transvection $t_{vw} \in \operatorname{Aut}(A_{\Gamma})$ mapping $v \mapsto vw$ and fixing the rest of the generators. In particular, $\operatorname{Aut}(A_{\Gamma})$ does not keep the factors invariant in Download English Version:

https://daneshyari.com/en/article/6414257

Download Persian Version:

https://daneshyari.com/article/6414257

Daneshyari.com