Stability of depths of powers of edge ideals

Tran Nam Trung
Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Hanoi, Viet Nam

A R T I C L E I N F O

Article history:

Received 15 July 2013
Available online 4 February 2016
Communicated by Bernd Ulrich

MSC:

13D45
05C90
05E40
05 E 45

Keywords:
Depth
Monomial ideal
Stanley-Reisner ideal
Edge ideal
Simplicial complex
Graph

A B S T R A C T

Let G be a graph and let $I:=I(G)$ be its edge ideal. In this paper, we provide an upper bound of n from which depth $R / I(G)^{n}$ is stationary, and compute this limit explicitly. This bound is always achieved if G has no cycles of length 4 and every its connected component is either a tree or a unicyclic graph.
© 2016 Elsevier Inc. All rights reserved.

Introduction

Let $R=K\left[x_{1}, \ldots, x_{r}\right]$ be a polynomial ring over a field K and I be a homogeneous ideal in R. Brodmann [2] showed that depth R / I^{n} is a constant for sufficiently large n. Moreover

$$
\lim _{n \rightarrow \infty} \operatorname{depth} R / I^{n} \leqslant \operatorname{dim} R-\ell(I)
$$

[^0]where $\ell(I)$ is the analytic spread of I. It was shown in [6, Proposition 3.3] that this is an equality when the associated graded ring of I is Cohen-Macaulay. We call the smallest number n_{0} such that depth $R / I^{n}=\operatorname{depth} R / I^{n_{0}}$ for all $n \geqslant n_{0}$, the index of depth stability of I, and denote this number by $\operatorname{dstab}(I)$. It is of natural interest to find a bound for $\operatorname{dstab}(I)$. As until now we only know effective bounds of dstab (I) for few special classes of ideals I, such as complete intersection ideals (see [5]), square-free Veronese ideals (see [8]), polymatroidal ideals (see [10]). In this paper we will study this problem for edge ideals.

From now on, every graph G is assumed to be simple (i.e., a finite, undirected, loopless and without multiple edges) without isolated vertices on the vertex set $V(G)=[r]:=$ $\{1, \ldots, r\}$ and the edge set $E(G)$ unless otherwise indicated. We associate to G the quadratic squarefree monomial ideal

$$
I(G)=\left(x_{i} x_{j} \mid\{i, j\} \in E(G)\right) \subseteq R=K\left[x_{1}, \ldots, x_{r}\right]
$$

which is called the edge ideal of G.
If I is a polymatroidal ideal in R, Herzog and Qureshi proved that $\operatorname{dstab}(I)<\operatorname{dim} R$ and they asked whether $\operatorname{dstab}(I)<\operatorname{dim} R$ for all Stanley-Reisner ideals I in R (see [10]). For a graph G, if every its connected component is nonbipartite, then we can see that $\operatorname{dstab}(I(G))<\operatorname{dim} R$ from [4]. In general, there is no an absolute bound of $\operatorname{dstab}(I(G))$ even in the case G is a tree (see [20]). In this paper we will establish a bound of $\operatorname{dstab}(I(G))$ for any graph G. In particular, $\operatorname{dstab}(I(G))<\operatorname{dim} R$.

The first main result of the paper shows that the limit of the sequence depth $R / I(G)^{n}$ is the number s of connected bipartite components of G and depth $R / I(G)^{n}$ immediately becomes constant once it reaches the value s. Moreover, $\operatorname{dstab}(I(G))$ can be obtained via its connected components.

Theorem 4.4. Let G be a graph with p connected components G_{1}, \ldots, G_{p}. Let s be the number of connected bipartite components of G. Then
(1) $\min \left\{\operatorname{depth} R / I(G)^{n} \mid n \geqslant 1\right\}=s$.
(2) $\operatorname{dstab}(I(G))=\min \left\{n \geqslant 1 \mid \operatorname{depth} R / I(G)^{n}=s\right\}$.
(3) $\operatorname{dstab}(I(G))=\sum_{i=1}^{p} \operatorname{dstab}\left(I\left(G_{i}\right)\right)-p+1$.

The second one estimates an upper bound for $\operatorname{dstab}(I(G))$. Before stating our result, we recall some terminologies from graph theory. In a graph G, a leaf is a vertex of degree one and a leaf edge is an edge incident with a leaf. A connected graph is called a tree if it contains no cycles, and it is called a unicyclic graph if it contains exactly one cycle. We use the symbols $v(G), \varepsilon(G)$ and $\varepsilon_{0}(G)$ to denote the number of vertices, edges and leaf edges of G, respectively.

Theorem 4.6. Let G be a graph. Let G_{1}, \ldots, G_{s} be all connected bipartite components of G and let G_{s+1}, \ldots, G_{s+t} be all connected nonbipartite components of G. Let $2 k_{i}$ be the

https://daneshyari.com/en/article/6414267

Download Persian Version:
https://daneshyari.com/article/6414267

Daneshyari.com

[^0]: E-mail address: tntrung@math.ac.vn.

