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Let G be a graph and let I := I(G) be its edge ideal. In 
this paper, we provide an upper bound of n from which 
depthR/I(G)n is stationary, and compute this limit explicitly. 
This bound is always achieved if G has no cycles of length 
4 and every its connected component is either a tree or a 
unicyclic graph.
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Introduction

Let R = K[x1, . . . , xr] be a polynomial ring over a field K and I be a homogeneous 
ideal in R. Brodmann [2] showed that depthR/In is a constant for sufficiently large n. 
Moreover

lim
n→∞

depthR/In � dimR− �(I),
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where �(I) is the analytic spread of I. It was shown in [6, Proposition 3.3] that this 
is an equality when the associated graded ring of I is Cohen–Macaulay. We call the 
smallest number n0 such that depthR/In = depthR/In0 for all n � n0, the index of 
depth stability of I, and denote this number by dstab(I). It is of natural interest to 
find a bound for dstab(I). As until now we only know effective bounds of dstab(I) for 
few special classes of ideals I, such as complete intersection ideals (see [5]), square-free 
Veronese ideals (see [8]), polymatroidal ideals (see [10]). In this paper we will study this 
problem for edge ideals.

From now on, every graph G is assumed to be simple (i.e., a finite, undirected, loopless 
and without multiple edges) without isolated vertices on the vertex set V (G) = [r] :=
{1, . . . , r} and the edge set E(G) unless otherwise indicated. We associate to G the 
quadratic squarefree monomial ideal

I(G) = (xixj | {i, j} ∈ E(G)) ⊆ R = K[x1, . . . , xr]

which is called the edge ideal of G.
If I is a polymatroidal ideal in R, Herzog and Qureshi proved that dstab(I) < dimR

and they asked whether dstab(I) < dimR for all Stanley–Reisner ideals I in R (see 
[10]). For a graph G, if every its connected component is nonbipartite, then we can 
see that dstab(I(G)) < dimR from [4]. In general, there is no an absolute bound of 
dstab(I(G)) even in the case G is a tree (see [20]). In this paper we will establish a 
bound of dstab(I(G)) for any graph G. In particular, dstab(I(G)) < dimR.

The first main result of the paper shows that the limit of the sequence depthR/I(G)n
is the number s of connected bipartite components of G and depthR/I(G)n immediately 
becomes constant once it reaches the value s. Moreover, dstab(I(G)) can be obtained 
via its connected components.

Theorem 4.4. Let G be a graph with p connected components G1, . . . , Gp. Let s be the 
number of connected bipartite components of G. Then

(1) min{depthR/I(G)n | n � 1} = s.
(2) dstab(I(G)) = min{n � 1 | depthR/I(G)n = s}.
(3) dstab(I(G)) =

∑p
i=1 dstab(I(Gi)) − p + 1.

The second one estimates an upper bound for dstab(I(G)). Before stating our result, 
we recall some terminologies from graph theory. In a graph G, a leaf is a vertex of degree 
one and a leaf edge is an edge incident with a leaf. A connected graph is called a tree if 
it contains no cycles, and it is called a unicyclic graph if it contains exactly one cycle. 
We use the symbols υ(G), ε(G) and ε0(G) to denote the number of vertices, edges and 
leaf edges of G, respectively.

Theorem 4.6. Let G be a graph. Let G1, . . . , Gs be all connected bipartite components of 
G and let Gs+1, . . . , Gs+t be all connected nonbipartite components of G. Let 2ki be the 
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