

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The classification of partition homogeneous groups with applications to semigroup theory

ALGEBRA

Jorge André^a, João Araújo^{b,*}, Peter J. Cameron^c

^a Departamento de Matemática, Universidade Nova de Lisboa, Portugal

^b Universidade Aberta and CEMAT-Ciências, Departamento de Matemática,

Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal

^c Mathematical Institute, University of St Andrews, St Andrews, Fife KY16 9SS,

Scotland, United Kingdom

A R T I C L E I N F O

Article history: Received 17 June 2015 Available online 4 February 2016 Communicated by Volodymyr Mazorchuk

MSC: 20B30 20B35 20B15 20B40 20M20 20M17

Keywords: Transformation semigroups Permutation groups Primitive groups A-transitive GAP

ABSTRACT

Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a *partition* of *n*, a sequence of positive integers in non-increasing order with sum *n*. Let $\Omega := \{1, ..., n\}$. An ordered partition $P = (A_1, A_2, ...)$ of Ω has type λ if $|A_i| = \lambda_i$.

Following Martin and Sagan, we say that G is λ -transitive if, for any two ordered partitions $P = (A_1, A_2, ...)$ and $Q = (B_1, B_2, ...)$ of Ω of type λ , there exists $g \in G$ with $A_i g = B_i$ for all i. A group G is said to be λ -homogeneous if, given two ordered partitions P and Q as above, inducing the sets $P' = \{A_1, A_2, ...\}$ and $Q' = \{B_1, B_2, ...\}$, there exists $g \in G$ such that P'g = Q'. Clearly a λ -transitive group is λ -homogeneous. The first goal of this paper is to classify the λ -homogeneous groups (Theorems 1.1 and 1.2). The second goal is to apply this classification to a problem in semigroup theory.

Let \mathcal{T}_n and \mathcal{S}_n denote the transformation monoid and the symmetric group on Ω , respectively. Fix a group $H \leq \mathcal{S}_n$. Given a non-invertible transformation $a \in \mathcal{T}_n \setminus \mathcal{S}_n$ and a group $G \leq \mathcal{S}_n$, we say that (a, G) is an H-pair if the semigroups generated by $\{a\} \cup H$ and $\{a\} \cup G$ contain the same non-units, that is, $\langle a, G \rangle \setminus G = \langle a, H \rangle \setminus H$. Using the classification of the λ -homogeneous groups we classify all the \mathcal{S}_n -pairs (Theorem 1.8). For a multitude of transformation semigroups this theorem immediately implies a description of

* Corresponding author.

E-mail addresses: jmla@fct.unl.pt (J. André), jjaraujo@fc.ul.pt (J. Araújo), pjc@mcs.st-andrews.ac.uk (P.J. Cameron).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.12.025 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.12.025 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.12.025 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.025 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.025 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.025 \\ 0021\m$

their automorphisms, congruences, generators and other relevant properties (Theorem 8.5).

This topic involves both group theory and semigroup theory; we have attempted to include enough exposition to make the paper self-contained for researchers in both areas.

The paper finishes with a number of open problems on permutation and linear groups.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

For notation and basic results on group theory we refer the reader to [17,21]; for semigroup theory we refer the reader to [28]. A permutation group G on $\Omega := \{1, \ldots, n\}$ (a subgroup of S_n) is said to be *t*-transitive if it acts transitively on the set of *t*-tuples of distinct elements of Ω , and is *t*-homogeneous if it acts transitively on the set of *t*-element subsets of $\{1, \ldots, n\}$. Clearly a *t*-transitive group is *t*-homogeneous. Livingstone and Wagner [38] showed that the converse is true if $5 \le t \le n/2$; the *t*-homogeneous, but not *t*-transitive groups for t = 2, 3, 4 were determined by Kantor [29,30].

Martin and Sagan [40] defined the notion of λ -transitivity of a permutation group, as a generalization of *t*-transitivity, where λ is a partition of *n* (the degree of the permutation group). In the case where $\lambda = (n - t, 1, 1, ..., 1)$, λ -transitivity is just *t*-transitivity. There is a weakening of this notion, here called λ -homogeneity; this notion is natural in permutation groups and also in transformation semigroups. Our first goal is to investigate the relationship between λ -transitivity and λ -homogeneity.

Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a *partition* of n, a sequence of positive integers in nonincreasing order with sum n. Now let G be a permutation group on Ω , where $|\Omega| = n$. An ordered partition $P = (A_1, A_2, ...)$ of Ω has $type \lambda$ if $|A_i| = \lambda_i$.

Following Martin and Sagan, we say that G is λ -transitive if, for any two partitions $P = (A_1, A_2, \ldots)$ and $Q = (B_1, B_2, \ldots)$ of Ω of type λ , there exists $g \in G$ with $A_i g = B_i$ for all *i*. A group G is said to be λ -homogeneous if, given two ordered partitions P and Q as above, inducing the sets $P' = \{A_1, A_2, \ldots\}$ and $Q' = \{B_1, B_2, \ldots\}$, there exists $g \in G$ such that P'g = Q'. Clearly a λ -transitive group is λ -homogeneous.

Our motivating question is whether the analogue of the Livingstone–Wagner theorem holds for partition homogeneity and transitivity. Indeed, we see that a group of degree nwhich is t-homogeneous but not t-transitive is λ -homogeneous but not λ -transitive, where λ is the partition (n - t, 1, 1, ..., 1) (with t ones).

We now introduce the three main results proved in this paper: Theorems 1.1 and 1.2 on permutation groups, and Theorem 1.8 on transformation semigroups.

Our first main theorem characterizes the λ -homogeneous groups. The partition $\lambda = (1, 1, ..., 1)$ is excluded since every permutation group is λ -homogeneous but only the symmetric group is λ -transitive.

Download English Version:

https://daneshyari.com/en/article/6414284

Download Persian Version:

https://daneshyari.com/article/6414284

Daneshyari.com