Exact pairs of homogeneous zero divisors

Andrew R. Kustin ${ }^{\text {a,*,1 }}$, Janet Striuli ${ }^{\text {b,2 }}$, Adela Vraciu ${ }^{\text {a, }}{ }^{\text {3 }}$
${ }^{\text {a }}$ Mathematics Department, University of South Carolina, Columbia, SC 29208, United States
${ }^{\text {b }}$ Mathematics Department, Fairfield University, Fairfield, CT 06824, United States

A R T I C L E I N F O

Article history:

Received 1 April 2013
Available online 25 January 2016
Communicated by Bernd Ulrich

MSC:

13D02
13 A 02

Keywords:

Compressed level algebra
Determinantal ring
Exact pair of zero divisors
Generic points in projective space
Linear resolution
Matrix factorization
Pfaffians
Segre embedding
Tate resolution
Totally acyclic complex
Totally reflexive module

A B S T R A C T

Let S be a standard graded Artinian algebra over a field k. We identify constraints on the Hilbert function of S which are imposed by the hypothesis that S contains an exact pair of homogeneous zero divisors. As a consequence, we prove that if S is a compressed level algebra, then S does not contain any homogeneous zero divisors.
© 2016 Elsevier Inc. All rights reserved.

[^0]
Contents

1. Terminology, notation, and preliminary results 223
2. The proof of the main theorem 226
3. Examples 234
References 247

In [18], Henriques and Şega defined the pair of elements (a, b) in a commutative ring S to be an exact pair of zero divisors if $\left(0:_{S} a\right)=(b)$ and $\left(0:_{S} b\right)=(a)$. We take S to be a standard graded Artinian algebra over a field and we identify constraints on the Hilbert function of S which are imposed by the hypothesis that S contains an exact pair $\left(\theta_{1}, \theta_{2}\right)$ of homogeneous zero divisors. In Theorem 2.10 we prove that the main numerical constraint depends on the sum $\operatorname{deg} \theta_{1}+\operatorname{deg} \theta_{2}$, but not on the individual numbers $\operatorname{deg} \theta_{1}$ or $\operatorname{deg} \theta_{2}$. In other words, the numerical constraint imposed on S by having an exact pair of homogeneous zero divisors of degrees d_{1} and d_{2} is the same as the constraint imposed by having an exact pair of homogeneous zero divisors of degrees 1 and $d_{1}+d_{2}-1$. This result is especially curious because it is possible for S to have an exact pair of homogeneous zero divisors of degrees 2 and 2 without having any homogeneous exact zero divisors of degree 1; see Example 3.1. Our main result is Theorem 2.10.

Theorem 2.10. Let S be a standard graded Artinian k-algebra. Suppose that $\left(\theta_{1}, \theta_{2}\right)$ is an exact pair of homogeneous zero divisors in S. If $D=\operatorname{deg} \theta_{1}+\operatorname{deg} \theta_{2}$, then the Hilbert series of S is divisible by $\frac{t^{D}-1}{t-1}$.

In the statement of Theorem 2.10, the algebra S is Artinian, so the Hilbert series, $\mathrm{HS}_{S}(t)$, of S is a polynomial in $\mathbb{Z}[t]$, the expression $\frac{t^{D}-1}{t-1}$ is equal to the polynomial $1+t+t^{2}+\cdots+t^{D-1}$ of $\mathbb{Z}[t]$, and
"the Hilbert series of S is divisible by $\frac{t^{D}-1}{t-1}$ " means that the polynomial
$1+t+t^{2}+\cdots+t^{D-1}$ divides the polynomial $\operatorname{HS}_{S}(t)$
in the polynomial ring $\mathbb{Z}[t]$.

We apply Theorem 2.10 in Section 3 to obtain a list of conditions on the standard graded k-algebra S, each of which leads to the conclusion that S does not have an exact pair of homogeneous zero divisors. These results are striking due to the connection between the existence of totally reflexive S-modules and the existence of exact zero divisors in S.

Definition 0.2. Let S be a commutative ring. A finitely generated S-module M is called totally reflexive if there exists a doubly infinite sequence of finitely generated free S-modules

https://daneshyari.com/en/article/6414333

Download Persian Version:
https://daneshyari.com/article/6414333

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kustin@math.sc.edu (A.R. Kustin), jstriuli@fairfield.edu (J. Striuli), vraciu@math.sc.edu (A. Vraciu).
 ${ }^{1}$ Supported in part by the National Security Agency and the Simons Foundation.
 ${ }^{2}$ Supported in part by the National Science Foundation.
 ${ }^{3}$ Supported in part by the National Security Agency and the National Science Foundation.

