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In [18], Henriques and Sega defined the pair of elements (a,b) in a commutative ring
S to be an exact pair of zero divisors if (0 :g a) = (b) and (0 :g b) = (a). We take S
to be a standard graded Artinian algebra over a field and we identify constraints on the
Hilbert function of S which are imposed by the hypothesis that S contains an exact pair
(01, 62) of homogeneous zero divisors. In Theorem 2.10 we prove that the main numerical
constraint depends on the sum deg 61 4+ deg 6>, but not on the individual numbers deg 6,
or deg 6s. In other words, the numerical constraint imposed on S by having an exact pair
of homogeneous zero divisors of degrees d; and ds is the same as the constraint imposed
by having an exact pair of homogeneous zero divisors of degrees 1 and d; + ds — 1.
This result is especially curious because it is possible for S to have an exact pair of
homogeneous zero divisors of degrees 2 and 2 without having any homogeneous exact
zero divisors of degree 1; see Example 3.1. Our main result is Theorem 2.10.

Theorem 2.10. Let S be a standard graded Artinian k-algebra. Suppose that (01,62) is

an exact pair of homogeneous zero divisors in S. If D = deg 61 + deg 0, then the Hilbert
tP—1
=1 -

series of S is divisible by

In the statement of Theorem 2.10, the algebra S is Artinian, so the Hilbert series,
tP—1

HSs(t), of S is a polynomial in Z[t], the expression is equal to the polynomial

t—1
L+t+t2 4 +tP71 of Z[t], and
“the Hilbert series of S is divisible by ttD_—’ll” means that the polynomial
1+t+t>+---4+tP~1 divides the polynomial HSg(t)
in the polynomial ring Z[t]. (0.1)

We apply Theorem 2.10 in Section 3 to obtain a list of conditions on the standard
graded k-algebra S, each of which leads to the conclusion that S does not have an
exact pair of homogeneous zero divisors. These results are striking due to the connection
between the existence of totally reflexive S-modules and the existence of exact zero
divisors in S.

Definition 0.2. Let S be a commutative ring. A finitely generated S-module M is called to-
tally reflexive if there exists a doubly infinite sequence of finitely generated free S-modules
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