Journal of Algebra 453 (2016) 221-248

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Exact pairs of homogeneous zero divisors

ALGEBRA

Andrew R. Kustin ^{a,*,1}, Janet Striuli ^{b,2}, Adela Vraciu ^{a,3}

 ^a Mathematics Department, University of South Carolina, Columbia, SC 29208, United States
^b Mathematics Department, Fairfield University, Fairfield, CT 06824, United States

ARTICLE INFO

Article history: Received 1 April 2013 Available online 25 January 2016 Communicated by Bernd Ulrich

MSC: 13D02 13A02

Keywords:

Compressed level algebra Determinantal ring Exact pair of zero divisors Generic points in projective space Linear resolution Matrix factorization Pfaffians Segre embedding Tate resolution Totally acyclic complex Totally reflexive module

АВЅТ КАСТ

Let S be a standard graded Artinian algebra over a field k. We identify constraints on the Hilbert function of S which are imposed by the hypothesis that S contains an exact pair of homogeneous zero divisors. As a consequence, we prove that if S is a compressed level algebra, then S does not contain any homogeneous zero divisors.

@ 2016 Elsevier Inc. All rights reserved.

* Corresponding author. *E-mail addresses:* kustin@math.sc.edu (A.R. Kustin), jstriuli@fairfield.edu (J. Striuli), vraciu@math.sc.edu (A. Vraciu).

- ¹ Supported in part by the National Security Agency and the Simons Foundation.
- ² Supported in part by the National Science Foundation.
- $^3\,$ Supported in part by the National Security Agency and the National Science Foundation.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.01.016} 0021-8693 @ 2016 Elsevier Inc. All rights reserved.$

Contents

1.	Terminology, notation, and preliminary results	223
2.	The proof of the main theorem	226
3.	Examples	234
Refere	ences	247

In [18], Henriques and Şega defined the pair of elements (a, b) in a commutative ring S to be an *exact pair of zero divisors* if $(0:_S a) = (b)$ and $(0:_S b) = (a)$. We take S to be a standard graded Artinian algebra over a field and we identify constraints on the Hilbert function of S which are imposed by the hypothesis that S contains an exact pair (θ_1, θ_2) of homogeneous zero divisors. In Theorem 2.10 we prove that the main numerical constraint depends on the sum deg $\theta_1 + \text{deg } \theta_2$, but not on the individual numbers deg θ_1 or deg θ_2 . In other words, the numerical constraint imposed on S by having an exact pair of homogeneous zero divisors of degrees d_1 and d_2 is the same as the constraint imposed by having an exact pair of homogeneous zero divisors of degrees 2 and 2 without having any homogeneous exact zero divisors of degree 1; see Example 3.1. Our main result is Theorem 2.10.

Theorem 2.10. Let S be a standard graded Artinian k-algebra. Suppose that (θ_1, θ_2) is an exact pair of homogeneous zero divisors in S. If $D = \deg \theta_1 + \deg \theta_2$, then the Hilbert series of S is divisible by $\frac{t^D - 1}{t - 1}$.

In the statement of Theorem 2.10, the algebra S is Artinian, so the Hilbert series, $\operatorname{HS}_{S}(t)$, of S is a polynomial in $\mathbb{Z}[t]$, the expression $\frac{t^{D}-1}{t-1}$ is equal to the polynomial $1 + t + t^{2} + \cdots + t^{D-1}$ of $\mathbb{Z}[t]$, and

"the Hilbert series of S is divisible by $\frac{t^{D}-1}{t-1}$ " means that the polynomial $1 + t + t^{2} + \dots + t^{D-1}$ divides the polynomial $\text{HS}_{S}(t)$ in the polynomial ring $\mathbb{Z}[t]$. (0.1)

We apply Theorem 2.10 in Section 3 to obtain a list of conditions on the standard graded k-algebra S, each of which leads to the conclusion that S does not have an exact pair of homogeneous zero divisors. These results are striking due to the connection between the existence of totally reflexive S-modules and the existence of exact zero divisors in S.

Definition 0.2. Let S be a commutative ring. A finitely generated S-module M is called *to-tally reflexive* if there exists a doubly infinite sequence of finitely generated free S-modules

Download English Version:

https://daneshyari.com/en/article/6414333

Download Persian Version:

https://daneshyari.com/article/6414333

Daneshyari.com