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simple form. Rains and Vazirani have introduced the notion
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Keywords: ) ) ) ) A

Quasiparabolic sets analogous deformations exist; a motivating example is the
Coxeter groups conjugacy class of fixed-point-free involutions in the symmet-
Iwahori-Hecke algebras ric group. Deodhar has shown that the module M7 possesses
Twisted involutions a certain antilinear involution, called the bar operator, and a
Bar operators certain basis invariant under this involution, which generalizes
Canonical bases the Kazhdan—Lusztig basis of H. The well-known significance

Kazhdan—-Lusztig bases

of this basis in representation theory makes it natural to seek
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to extend Deodhar’s results to the quasiparabolic setting.
In general, the obstruction to finding such an extension is
the existence of an appropriate quasiparabolic analogue of the
“bar operator.” In this paper, we consider the most natural
definition of a quasiparabolic bar operator, and develop a
theory of “quasiparabolic Kazhdan—Lusztig bases” under the
hypothesis that such a bar operator exists. Giving content
to this theory, we prove that a bar operator in the desired
sense does exist for quasiparabolic W-sets given by twisted
conjugacy classes of twisted involutions. Finally, we prove
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several results classifying the quasiparabolic conjugacy classes
in a Coxeter group.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let (W, .S) be a Coxeter system with length function £ : W — N, and let H = H(W, S)
be its Iwahori-Hecke algebra: this is the Z[v,v~!]-algebra H, with a basis given by the
symbols H,, for w € W, whose multiplication is uniquely determined by the condition
that

H,, if £(sw) > f(w)

Hyw+ (v —0"Y) - Hy  if £(sw) < £(w) for s € S and w e W.

H,H, = {

Observe that H; (which we typically write as 1 or omit) is the multiplicative unit of
‘H and that Hj is invertible for each s € S. There exists a unique ring homomorphism
H — H with v — v~ and H, — H;'; we denote this map by H — H, and refer to it
as the bar operator of H.

Certain representations of W admit natural and interesting deformations to modules
of the algebra H. For example, H viewed as a left module over itself clearly deforms
the regular representation of W. For another example, suppose J C S is a subset of
simple generators and let X = W/W be the set of left cosets of the standard parabolic
subgroup W; = (J) in W. Define the height of a coset to be the minimal length of any
of its elements, i.e., set

ht(C) = miléé(w) for a left coset C € W/W .
we
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