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The core of an ideal is the intersection of all of its reductions. 
We have shown that under certain conditions, the exponent 
set of the core of a zero-dimensional monomial ideal exhibits 
translational symmetry. In addition, in two dimensions, the 
core of a monomial ideal is often the core of a reduction num-
ber one ideal. We provide an algorithm for obtaining that 
reduction number one ideal and, subsequently, its core.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we investigate the exponent set of the core of a zero-dimensional mono-
mial ideal. The core of an ideal arises naturally from the study of reductions. Introduced 
by D.G. Northcott and D. Rees in [10], reductions provide a method for studying the 
growth of powers of an ideal through simplifications of that ideal. An ideal J contained 
in I is called a reduction of I if JIr = Ir+1 for some r ∈ N. In a Noetherian ring, J is a 
reduction of I provided I is integral over J .

From the latter characterization, the integral closure, I, is the unique largest ideal 
for which I is a reduction. On the other hand, most ideals I have infinitely many min-
imal reductions [10]. To remedy this lack of uniqueness, we take the intersection of all 
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reductions of I. This intersection, first introduced by D. Rees and J. Sally in [13], is 
called the core of I, denoted core(I). In a polynomial ring, both the integral closure and 
the core of a monomial ideal are monomial (see for instance [14, 1.4.2] and [3, 5.1]). It 
is well known that the integral closure of a monomial ideal is determined by the convex 
hull of its exponent set, the Newton polyhedron NP(I) (see for instance [14, 1.4]). We 
seek an analogous description for the core of a monomial ideal.

Previously, Corso, Huneke, Hyry, Polini, Smith, Trung, and Ulrich, and Vitulli 
[3–8,11,12] have shown that in various settings, including 0-dimensional monomial ide-
als, core(I) can be expressed as a colon ideal. Indeed, core(I) = J t+1 : It, where J is a 
minimal or locally minimal reduction of I and t is sufficiently large. However, a minimal 
reduction of a monomial ideal need not be monomial, so J t+1 : It can be difficult to 
compute. To address this, Polini, Ulrich, and Vitulli showed core(I) = mono(K) for a 
0-dimensional monomial ideal I, where K is a general locally minimal reduction of I, 
and mono(K) is the largest monomial ideal contained in K [12, 3.6]. Though computa-
tionally more effective, this still does not explicitly connect core(I) to the exponent set 
of I. In what follows, we give an algorithm for computing Γ(core(I)), the exponent set 
of the core of I, and show that it has translational symmetry with respect to NP(I).

First, we consider ideals I in d-dimensional polynomial rings that have a d-generated 
monomial reduction. In this setting, NP(I) is determined by a single hyperplane. Propo-
sition 2.2 shows that the exponent set of the core, Γ(core(I)), is a d-fold translation 
of Γ(core(I) : I). Monomial almost complete intersection ideals, which may not have 
a d-generated monomial reduction, have (d + 1)-fold symmetry in the exponent sets of 
their cores, as shown in Proposition 2.4.

We then introduce local translational symmetry, or LTS, in Definition 3.2 to describe 
Γ(core(I)) when we restrict to d = 2 but allow the smallest monomial reduction of a 
0-dimensional monomial ideal I to have any number of generators. LTS generalizes the 
global symmetry described above for ideals whose Newton polyhedron is determined by 
multiple hyperplanes. This definition proves useful not only for describing the core of I, 
but also for determining whether or not I has reduction number one (see Theorem 3.7). 
The latter characterization yields Algorithm 3.9, an efficient method of calculating the 
smallest reduction number one ideal containing I.

Because not all cores of ideals have the expected symmetry even in dimension 2
(compare Examples 3.12 and 3.14), we need to determine precisely when LTS occurs. To 
do so, we turn to the coefficient ideal of I, coef(I). The coefficient ideal, as introduced 
by Aberbach and Huneke in [2] and described for this setting in [9], is the largest ideal 
a such that Ia = Ja for any minimal reduction J of I. Theorem 3.11 shows that a core 
exhibits LTS if and only if core(I) = J coef(I), and that this happens only when core(I)
is also the core of a reduction number one ideal. To present Theorem 3.11 in another 
context, we could say the core exhibits LTS provided it is “expected” in the sense of [15]. 
Finally, we show that monomial almost complete intersections in k[x, y] are at least one 
class of ideals which satisfy these equivalent conditions.
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