

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Sectional genera of parameter ideals

Shiro Goto^a, Kazuho Ozeki^{b,*}

^a Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan

^b Department of Mathematical Science, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan

ARTICLE INFO

Article history: Received 14 April 2014 Available online 30 September 2015 Communicated by Bernd Ulrich

MSC: 13D40 13H15 13H10

Keywords: Hilbert function Hilbert coefficient Homological degrees

ABSTRACT

Let M be a finitely generated module over a Noetherian local ring. This paper reports, for a given parameter ideal Q for M, a criterion for the equality $\mathbf{g}_s(Q;M) = \mathrm{hdeg}_Q(M) - \mathbf{e}_Q^0(M) - \mathbf{T}_Q^1(M)$, where $\mathbf{g}_s(Q;M)$, $\mathrm{hdeg}_Q(M)$, $\mathbf{e}_Q^0(M)$, and $\mathbf{T}_Q^1(M)$ respectively denote the sectional genus, the homological degree, the multiplicity, and the homological torsion of M with respect to Q.

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	59
2.	Preliminaries	32
3.	The sectional genera and the homological degrees of parameters	35
4.	Examples	73
Refere	ences	76

^{*} Corresponding author.

E-mail addresses: goto@math.meiji.ac.jp (S. Goto), ozeki@yamaguchi-u.ac.jp (K. Ozeki).

1. Introduction

The notion of the sectional genera of commutative rings was introduced by A. Ooishi [11], and since then, many authors have been engaged in the development of the theory. The purpose of our paper is to give a criterion for a certain equality of the sectional genera of parameters for modules.

To state the problems and the results of our paper, let us fix some of our terminology. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let M be a finitely generated A-module with $s = \dim_A M$. For simplicity, throughout this paper, we assume that A is \mathfrak{m} -adically complete and the residue class field A/\mathfrak{m} of A is infinite. Let I be a fixed \mathfrak{m} -primary ideal in A and let $\ell_A(N)$ denote, for an A-module N, the length of N. Then there exist integers $\{e_I^i(M)\}_{0 \le i \le s}$ such that

$$\ell_A(M/I^{n+1}M) = e_I^0(M) \binom{n+s}{s} - e_I^1(M) \binom{n+s-1}{s-1} + \dots + (-1)^s e_I^s(M)$$

for all $n \gg 0$. We call $e_I^i(M)$ the *i*-th Hilbert coefficient of M with respect to I and especially call the leading coefficient $e_I^0(M)$ (> 0) the multiplicity of M with respect to I. We set

$$g_s(I; M) = \ell_A(M/IM) - e_I^0(M) + e_I^1(M)$$

and call it the sectional genus of M with respect to I.

In this paper we need the notions of homological degrees and torsions of modules. For each $j \in \mathbb{Z}$ we set

$$M_j = \operatorname{Hom}_A(\operatorname{H}^j_{\mathfrak{m}}(M), E),$$

where $E = \mathcal{E}_A(A/\mathfrak{m})$ denotes the injective envelope of A/\mathfrak{m} and $\mathcal{H}^j_{\mathfrak{m}}(M)$ the jth local cohomology module of M with respect to the maximal ideal \mathfrak{m} . Then M_j is a finitely generated A-module with $\dim_A M_j \leq j$ for all $j \in \mathbb{Z}$ (Fact 2.1).

The homological degree $\operatorname{hdeg}_I(M)$ of M with respect to I is inductively defined in the following way, according to the dimension $s = \dim_A M$ of M.

Definition 1.1. (See [16].) For each finitely generated A-module M with $s = \dim_A M$, we set

$$hdeg_I(M) = \begin{cases} \ell_A(M) & \text{if } s \le 0, \\ e_I^0(M) + \sum_{j=0}^{s-1} {s-1 \choose j} hdeg_I(M_j) & \text{if } s > 0 \end{cases}$$

and call it the homological degree of M with respect to I.

The homological torsion of M with respect to I is defined as follows.

Download English Version:

https://daneshyari.com/en/article/6414364

Download Persian Version:

https://daneshyari.com/article/6414364

<u>Daneshyari.com</u>