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1. Introduction

This paper deals with the problem whether for a derivation 0, there is a Hasse—Schmidt
derivation (Op)nen such that & = 9;. We recall that a Hasse-Schmidt derivation on a
ring R (see [19]) is a sequence

D= (D;:R— R)ien
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satisfying the following properties:

e Dy =idg,
e each D; is additive,
o for any x,y € R we have

Di(zy) = Y Dj(@)Di(y).

k=i

A Hasse-Schmidt derivation D is iterative if for all i, j € IN we have
Di (¢] Dj = <Z +J>Dz+j
i

For a function f : R — R and a natural number n, we denote by f() the n-th com-
positional power of f. It is well-known that any derivation d on a Q-algebra expands
(uniquely) to an iterative Hasse—Schmidt derivation by the formula (%) N Mat-
sumura proved that the same (without uniqueness) is still true in the case (;fe’ fields of
positive characteristic p for derivations satisfying the (necessary) condition ) = 0 [16].
In Matsumura’s terminology, such a derivation 0 is (strongly) integrable.

One may wonder why to consider the iterativity condition of such a specific form
(although the characteristic 0 example gives a rather strong motivation). It was noticed
by Matsumura that actually the iterativity condition as above is governed by the ad-
ditive group law X + Y. Since in characteristic 0, any (one-dimensional) formal group
is isomorphic to the additive one, it is a good choice indeed. However, in the case of
positive characteristic there are many more formal group laws and it is an interesting
question whether the corresponding derivations are integrable. A multiplicative version
of Matsumura’s theorem was proved by Tyc [20], where the condition 9P = 0 is replaced
with the (necessary again) condition d®) = 9.

In [10], the authors deal with a more general problem whether iterative m-truncated
(m is a positive integer) Hasse—Schmidt derivations are integrable. An iterative
m-truncated Hasse-Schmidt derivation is a sequence (9;);<pm satisfying the higher
Leibnitz rules and the appropriate iterativity conditions, see [10, Def. 2.11]. Since a
one-truncated additively iterative Hasse-Schmidt derivation is equivalent to a standard
derivation 0 satisfying the condition %) = 0 (similarly in the multiplicative case, where
the necessary condition is ") = 9), this is a natural generalization. In [10], we extend
the results of Matsumura and Tyc to the case of an arbitrary truncation (in the additive
case, such a generalization is implicit in the work of Ziegler [22]). A certain class of
higher-dimensional commutative affine algebraic groups is treated by the first author
in [8]. In this paper, we focus on the one-dimensional case and we comment briefly on
the higher-dimensional cases in Section 3.1.

We abbreviate the term “additively (resp. multiplicatively) iterative Hasse-Schmidt
derivation” by “G,-derivation” (resp. “Gp-derivation”). Similarly, for any formal group
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