

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Palindromic automorphisms of free groups

Valeriy G. Bardakov ^{a,b}, Krishnendu Gongopadhyay ^c, Mahender Singh ^{c,*}

ARTICLE INFO

Article history: Received 3 November 2014 Available online 28 May 2015 Communicated by E.I. Khukhro

MSC: primary 20F28 secondary 20E36, 20E05

Keywords:
Free group
Palindromic automorphism
Representation
Residual nilpotence
Torelli group

ABSTRACT

Let F_n be the free group of rank n with free basis $X = \{x_1, \dots, x_n\}$. A palindrome is a word in $X^{\pm 1}$ that reads the same backwards as forwards. The palindromic automorphism group ΠA_n of F_n consists of those automorphisms that map each x_i to a palindrome. In this paper, we investigate linear representations of ΠA_n , and prove that ΠA_2 is linear. We obtain conjugacy classes of involutions in ΠA_2 , and investigate residual nilpotency of ΠA_n and some of its subgroups. Let IA_n be the group of those automorphisms of F_n that act trivially on the abelianisation, PI_n be the palindromic Torelli group of F_n , and let $E\Pi A_n$ be the elementary palindromic automorphism group of F_n . We prove that $PI_n = IA_n \cap E\Pi A_n'$. This result strengthens a recent result of Fullarton [2].

© 2015 Elsevier Inc. All rights reserved.

^a Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk 630090, Russia

^b Laboratory of Quantum Topology, Chelyabinsk State University, Brat'ev Kashirinykh street 129, Chelyabinsk 454001, Russia

^c Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, P. O. Manauli, Punjab 140306, India

^{*} Corresponding author.

E-mail addresses: bardakov@math.nsc.ru (V.G. Bardakov), krishnendu@iisermohali.ac.in (K. Gongopadhyay), mahender@iisermohali.ac.in (M. Singh).

1. Introduction

Let F_n be the free group of rank n with free basis $X = \{x_1, \ldots, x_n\}$, and let $Aut(F_n)$ be the automorphism group of F_n . A reduced word $w = x_1^{\epsilon_1} \ldots x_n^{\epsilon_n}$ in $X^{\pm 1}$ is called a palindrome if it is equal to its reverse word $\overline{w} = x_n^{\epsilon_n} \ldots x_1^{\epsilon_1}$. In [1], Collins defined the palindromic automorphism group ΠA_n as the subgroup of $Aut(F_n)$ consisting of those automorphisms that map each x_i to a palindrome. He proved that ΠA_n is finitely presented, and that it is generated by the following three types of automorphisms:

$$t_{i}: \begin{cases} x_{i} \longmapsto x_{i}^{-1} \\ x_{k} \longmapsto x_{k} & \text{for } k \neq i, \end{cases}$$

$$\alpha_{i,i+1}: \begin{cases} x_{i} \longmapsto x_{i+1} \\ x_{i+1} \longmapsto x_{i} \\ x_{k} \longmapsto x_{k} & \text{for } k \neq i, \end{cases}$$

$$\mu_{ij}: \begin{cases} x_{i} \longmapsto x_{j}x_{i}x_{j} & \text{for } i \neq j \\ x_{k} \longmapsto x_{k} & \text{for } k \neq i. \end{cases}$$

The group

$$E\Pi A_n = \langle \mu_{ij} \mid 1 \le i \ne j \le n \rangle$$

is called the elementary palindromic automorphism group of F_n , and the group

$$ES_n = \langle t_i, \alpha_{j,j+1} \mid 1 \le i \le n, \ 1 \le j \le n-1 \rangle$$

is called the extended symmetric group. In [1], Collins showed that

$$\Pi A_n \cong E\Pi A_n \rtimes ES_n$$

for $n \geq 2$. Here, ES_n acts on $E\Pi A_n$ by conjugation given by the following rules:

$$t_i \mu_{ij} t_i = \mu_{ij}^{-1}, \ t_j \mu_{ij} t_j = \mu_{ij}^{-1},$$
$$t_k \mu_{ij} t_k = \mu_{ij} \text{ for } k \neq i, j,$$
$$\alpha \mu_{ij} \alpha = \mu_{\alpha(i)\alpha(j)} \text{ for } \alpha \in \{\alpha_{1,2}, \alpha_{2,3}, \dots, \alpha_{n-1,n}\}.$$

In [1], Collins also showed that a set of defining relations for $E\Pi A_n$ is

$$\mu_{ij}\mu_{kl} = \mu_{kl}\mu_{ij},$$

$$\mu_{ik}\mu_{jk} = \mu_{jk}\mu_{ik},$$

$$\mu_{ik}\mu_{jk}\mu_{ij} = \mu_{ij}\mu_{jk}\mu_{ik}^{-1}.$$

In the same paper, Collins conjectured that $E\Pi A_n$ is torsion free for each $n \geq 2$. Using geometric techniques, Glover and Jensen [4] proved this conjecture and also calculated the

Download English Version:

https://daneshyari.com/en/article/6414430

Download Persian Version:

https://daneshyari.com/article/6414430

<u>Daneshyari.com</u>