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This paper shows that every Plactic algebra of finite rank 
admits a finite Gröbner–Shirshov basis. The result is proved 
by using the combinatorial properties of Young tableaux 
to construct a finite complete rewriting system for the 
corresponding Plactic monoid, which also yields the corollaries 
that Plactic monoids of finite rank have finite derivation type 
and satisfy the homological finiteness properties left and right 
FP∞. Also, answering a question of Zelmanov, we apply this 
rewriting system and other techniques to show that Plactic 
monoids of finite rank are biautomatic.
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1. Introduction

The Plactic monoid has its origins in work of Schensted [1] and Knuth [2] concerning
certain combinatorial problems and operations on Young tableaux. It was later studied 
in depth by Lascoux and Schützenberger [3] and has since become an important tool 
in several aspects of representation theory and algebraic combinatorics; see [4,5]. The 
first significant application of the Plactic monoid was to the Littlewood–Richardson rule 
for Schur functions. This is explained in detail in the appendix to the second edition 
of J.A. Green’s influential monograph on the representation theory of the general linear 
group [6]. The Littlewood–Richardson rule [7] is one of the most important results in the 
theory of symmetric functions. It provides a combinatorial rule for expressing a product 
of two Schur functions as a linear combination of Schur functions. Since Schur functions 
in n variables are the irreducible polynomial characters of GLn(C), the Littlewood–
Richardson rule gives a tensor product rule for GLn(C). One of the most enlightening 
proofs of the Littlewood–Richardson rule (see [5, Section 5.4]) is given by lifting the 
calculus of the Schur function to the integral monoid ring of the Plactic monoid (called 
the tableau ring; see [4, Chapter 2]).

Subsequently the Plactic monoid has been found to have applications in a range of 
areas including a combinatorial description of Kostka–Foulkes polynomials [3,8], and to 
Kashiwara’s theory of crystal bases [9,10] leading to the definition of Plactic algebras 
associated to all classical simple Lie algebras [11–13]. Further results on Robinson–
Schensted correspondence and the Plactic relations may be found in [9,14]. Several 
variations and generalizations of the Plactic monoid have been proposed and investi-
gated including hypoplactic monoids [13], and shifted Plactic monoids [15]. In [16] it is 
shown that the Hilbert series of the Plactic monoid is given by the Schur–Littlewood 
formula, and that there are exactly three families of ternary monoids with this Hilbert 
series. Schützenberger [17] argues that the Plactic monoid ought to be considered as “one 
of the most fundamental monoids in algebra”. He cites three reasons for his own personal 
“weakness” for the Plactic monoid, the first of them being the application to symmetric 
functions mentioned above.

Various aspects of the corresponding semigroup algebras, the Plactic algebras, have 
been investigated; see, for example, [18,19]. These algebras are important special cases in 
the more general study of algebras defined by homogeneous semigroup presentations [20]. 
Frequently, fundamental problems about such semigroup algebras require detailed anal-
ysis of the corresponding semigroups. An important example of this is given by the 
theory of Gröbner–Shirshov bases. Kubat & Okniński showed that the Plactic algebra 
of rank 3 has a finite Gröbner–Shirshov basis [21, Theorem 1] and that Plactic alge-
bras of rank 4 or more do not admit a finite Gröbner–Shirshov basis with respect to 
the degree-lexicographic ordering over the usual generating set for the Plactic monoid 
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