

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Compatible pairs of Borel subalgebras and shared orbit pairs

ALGEBRA

Boris Širola¹

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

ARTICLE INFO

Article history: Received 1 May 2014 Available online 12 November 2014 Communicated by Alberto Elduque

MSC: primary 17B20 secondary 17B05, 17B22, 17B25

Keywords: Semisimple Lie algebra Cartan subalgebra Root Boot system Borel subalgebra Pair of Lie algebras Shared orbit pair Nilpotent element Nilpotent orbit

ABSTRACT

Consider a class of pairs $(\mathfrak{g}, \mathfrak{g}_1)$, where \mathfrak{g} is a semisimple Lie algebra and \mathfrak{g}_1 is a subalgebra reductive in \mathfrak{g} , satisfying the following: For any Cartan subalgebra $\mathfrak{h}_1 \subseteq \mathfrak{g}_1$ there is a unique Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ containing \mathfrak{h}_1 . Given such a pair $(\mathfrak{g}, \mathfrak{g}_1)$ and a Borel subalgebra $\mathfrak{b}_1 \subseteq \mathfrak{g}_1$ we study a (finite) set $\mathcal{S}^{\mathfrak{g}}_{\mathrm{Bor}}(\mathfrak{b}_1)$ of all Borel subalgebras $\mathfrak{b} \subseteq \mathfrak{g}$ containing \mathfrak{h}_1 . In particular we point at the subclass of pairs $(\mathfrak{g}, \mathfrak{g}_1)$ when $\mathcal{S}^{\mathfrak{g}}_{\mathrm{Bor}}(\mathfrak{b}_1)$ is a singleton, for every Borel subalgebra $\mathfrak{b}_1 \subseteq \mathfrak{g}_1$. As a consequence, for such pairs we relate the corresponding flag varieties $\mathcal{B}(\mathfrak{g})$ and $\mathcal{B}(\mathfrak{g}_1)$. As an interesting class of pairs $(\mathfrak{g}, \mathfrak{g}_1)$, for which we can apply our results on pairs of Borel subalgebras, we study in detail the pairs considered by R. Brylinski and B. Kostant related to shared orbit pairs.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Unless specified otherwise throughout this paper \mathbb{K} denotes a field of characteristic zero. All Lie algebras we consider are finite dimensional over the ground field. Given

http://dx.doi.org/10.1016/j.jalgebra.2014.10.035 0021-8693/© 2014 Elsevier Inc. All rights reserved.

E-mail address: sirola@math.hr.

¹ The author was supported in part by the Ministry of Science, Education and Sports, Republic of Croatia, Grant No. 037-0372781-2811 and in part by the Croatian Science Foundation Grant No. 2634.

a Lie algebra \mathfrak{g} , we define $\overline{\mathfrak{g}} = \mathfrak{g} \otimes \overline{\mathbb{K}}$, where $\overline{\mathbb{K}}$ is a fixed algebraic closure of \mathbb{K} . By $B_{\mathfrak{g}}$ we denote the Killing form of \mathfrak{g} . Given reductive \mathfrak{g} and a split Cartan subalgebra \mathfrak{h} of \mathfrak{g} , by $\Delta(\mathfrak{g}, \mathfrak{h})$ we denote the root system of \mathfrak{g} with respect to \mathfrak{h} . By $\Pi(\mathfrak{g}, \mathfrak{h})$ we denote a choice of simple roots. For a root ϕ , X_{ϕ} denotes a nonzero root vector from the root subspace \mathfrak{g}_{ϕ} . By $\Delta^{\pm} = \Delta^{\pm}(\mathfrak{g}, \mathfrak{h})$ we denote the positive/negative roots, and then $\mathfrak{n}^{\pm} =$ $\mathfrak{n}^{\pm}(\mathfrak{g}) = \sum_{\phi \in \Delta^{\pm}} \mathfrak{g}_{\phi}$. Thus we have the usual triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$.

For a semisimple Lie algebra \mathfrak{g} and a subalgebra \mathfrak{g}_1 which is reductive in \mathfrak{g} , it is worth to know when the pair $(\mathfrak{g}, \mathfrak{g}_1)$ satisfies the following condition:

(Q1) For any Cartan subalgebra $\mathfrak{h}_1 \subseteq \mathfrak{g}_1$ there exists a unique Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ containing \mathfrak{h}_1 .

The main goal of the present paper is to study those pairs satisfying the following stronger condition:

(Bor) The pair $(\mathfrak{g}, \mathfrak{g}_1)$ satisfies (Q1), and for any Borel subalgebra $\mathfrak{b}_1 \subseteq \mathfrak{g}_1$ there exists a unique Borel subalgebra $\mathfrak{b} \subseteq \mathfrak{g}$ containing \mathfrak{b}_1 .

For a pair of Cartan subalgebras $(\mathfrak{h}, \mathfrak{h}_1)$ as in $(\mathbf{Q1})$, and a chosen Borel subalgebra \mathfrak{b}_1 of \mathfrak{g}_1 containing \mathfrak{h}_1 , we thus have a unique Borel subalgebra \mathfrak{b} of \mathfrak{g} containing \mathfrak{h} and \mathfrak{b}_1 . We say that such a pair of Borel subalgebras $(\mathfrak{b}, \mathfrak{b}_1)$ is *compatible* with the pair of Cartan subalgebras $(\mathfrak{h}, \mathfrak{h}_1)$; or just that it is compatible.

Suppose again that \mathfrak{g} is semisimple and $\mathfrak{g}_1 \subseteq \mathfrak{g}$ is reductive in it. For simplicity we will here also assume that \mathbb{K} is algebraically closed. It is interesting to know whether $(\mathfrak{g}, \mathfrak{g}_1)$ satisfies the condition (**Bor**). And if not, given a Borel subalgebra \mathfrak{b}_1 of \mathfrak{g}_1 , can we determine the set of all Borel subalgebras \mathfrak{b} of \mathfrak{g} containing \mathfrak{b}_1 ? Let us be more precise. For any reductive \mathbb{K} -Lie algebra \mathfrak{r} by $\mathcal{B}(\mathfrak{r})$ we denote the set of all its Borel subalgebras. Now assume that a pair $(\mathfrak{g}, \mathfrak{g}_1)$ satisfies the condition (**Bor**). Then the map

$$\mathsf{B} = \mathsf{B}^{\mathfrak{g}}_{\mathfrak{q}_1} : \mathcal{B}(\mathfrak{g}_1) \to \mathcal{B}(\mathfrak{g}),$$

given by $B(\mathfrak{b}_1) = \mathfrak{b}$, with \mathfrak{b}_1 and \mathfrak{b} as in (**Bor**), is well defined. More generally now suppose that a pair $(\mathfrak{g}, \mathfrak{g}_1)$ satisfies (**Q1**). For any $\mathfrak{b}_1 \in \mathcal{B}(\mathfrak{g}_1)$ by $\widehat{B}(\mathfrak{b}_1)$, or $\mathcal{S}^{\mathfrak{g}}_{\mathrm{Bor}}(\mathfrak{b}_1)$, we denote the subset of $\mathcal{B}(\mathfrak{g})$ consisting of all Borel subalgebras \mathfrak{b} containing \mathfrak{b}_1 ; i.e., consider a map

$$\widehat{\mathsf{B}} = \widehat{\mathsf{B}}_{\mathfrak{g}_1}^{\mathfrak{g}} : \mathfrak{b}_1 \mapsto \widehat{\mathsf{B}}(\mathfrak{b}_1).$$

The following theorem is our first main result. It summarizes our knowledge about the class of pairs $(\mathfrak{g}, \mathfrak{g}_1)$ satisfying (**Bor**), and the above defined maps B and \widehat{B} ; see Corollary 2.10 and Propositions 2.11, 2.15 and 2.17. In particular the part (iii) is a geometric statement saying that for a pair $(\mathfrak{g}, \mathfrak{g}_1)$ satisfying (**Bor**) the flag variety $\mathcal{B}(\mathfrak{g}_1)$ sits inside

Download English Version:

https://daneshyari.com/en/article/6414526

Download Persian Version:

https://daneshyari.com/article/6414526

Daneshyari.com