Compatible pairs of Borel subalgebras and shared orbit pairs

Boris Širola ${ }^{1}$
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

A R T I C L E I N F O

Article history:

Received 1 May 2014
Available online 12 November 2014
Communicated by Alberto Elduque

MSC:

primary 17B20
secondary $17 \mathrm{~B} 05,17 \mathrm{~B} 22,17 \mathrm{~B} 25$

Keywords:

Semisimple Lie algebra
Cartan subalgebra
Root
Root system
Borel subalgebra
Pair of Lie algebras
Shared orbit pair
Nilpotent element
Nilpotent orbit

Abstract

Consider a class of pairs $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$, where \mathfrak{g} is a semisimple Lie algebra and \mathfrak{g}_{1} is a subalgebra reductive in \mathfrak{g}, satisfying the following: For any Cartan subalgebra $\mathfrak{h}_{1} \subseteq \mathfrak{g}_{1}$ there is a unique Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ containing \mathfrak{h}_{1}. Given such a pair $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$ and a Borel subalgebra $\mathfrak{b}_{1} \subseteq \mathfrak{g}_{1}$ we study a (finite) set $\mathcal{S}_{\text {Bor }}^{\mathfrak{g}}\left(\mathfrak{b}_{1}\right)$ of all Borel subalgebras $\mathfrak{b} \subseteq \mathfrak{g}$ containing \mathfrak{b}_{1}. In particular we point at the subclass of pairs ($\mathfrak{g}, \mathfrak{g}_{1}$) when $\mathcal{S}_{\text {Bor }}^{\mathfrak{g}}\left(\mathfrak{b}_{1}\right)$ is a singleton, for every Borel subalgebra $\mathfrak{b}_{1} \subseteq \mathfrak{g}_{1}$. As a consequence, for such pairs we relate the corresponding flag varieties $\mathcal{B}(\mathfrak{g})$ and $\mathcal{B}\left(\mathfrak{g}_{1}\right)$. As an interesting class of pairs $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$, for which we can apply our results on pairs of Borel subalgebras, we study in detail the pairs considered by R. Brylinski and B. Kostant related to shared orbit pairs.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Unless specified otherwise throughout this paper \mathbb{K} denotes a field of characteristic zero. All Lie algebras we consider are finite dimensional over the ground field. Given

[^0]a Lie algebra \mathfrak{g}, we define $\overline{\mathfrak{g}}=\mathfrak{g} \otimes \overline{\mathbb{K}}$, where $\overline{\mathbb{K}}$ is a fixed algebraic closure of \mathbb{K}. By $B_{\mathfrak{g}}$ we denote the Killing form of \mathfrak{g}. Given reductive \mathfrak{g} and a split Cartan subalgebra \mathfrak{h} of \mathfrak{g}, by $\Delta(\mathfrak{g}, \mathfrak{h})$ we denote the root system of \mathfrak{g} with respect to \mathfrak{h}. By $\Pi(\mathfrak{g}, \mathfrak{h})$ we denote a choice of simple roots. For a root ϕ, X_{ϕ} denotes a nonzero root vector from the root subspace \mathfrak{g}_{ϕ}. By $\Delta^{ \pm}=\Delta^{ \pm}(\mathfrak{g}, \mathfrak{h})$ we denote the positive/negative roots, and then $\mathfrak{n}^{ \pm}=$ $\mathfrak{n}^{ \pm}(\mathfrak{g})=\sum_{\phi \in \Delta^{ \pm}} \mathfrak{g}_{\phi}$. Thus we have the usual triangular decomposition $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$.

For a semisimple Lie algebra \mathfrak{g} and a subalgebra \mathfrak{g}_{1} which is reductive in \mathfrak{g}, it is worth to know when the pair $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$ satisfies the following condition:
(Q1) For any Cartan subalgebra $\mathfrak{h}_{1} \subseteq \mathfrak{g}_{1}$ there exists a unique Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ containing \mathfrak{h}_{1}.

The main goal of the present paper is to study those pairs satisfying the following stronger condition:
(Bor) The pair ($\mathfrak{g}, \mathfrak{g}_{1}$) satisfies $(\mathbf{Q 1})$, and for any Borel subalgebra $\mathfrak{b}_{1} \subseteq \mathfrak{g}_{1}$ there exists a unique Borel subalgebra $\mathfrak{b} \subseteq \mathfrak{g}$ containing \mathfrak{b}_{1}.

For a pair of Cartan subalgebras ($\mathfrak{h}, \mathfrak{h}_{1}$) as in (Q1), and a chosen Borel subalgebra \mathfrak{b}_{1} of \mathfrak{g}_{1} containing \mathfrak{h}_{1}, we thus have a unique Borel subalgebra \mathfrak{b} of \mathfrak{g} containing \mathfrak{h} and \mathfrak{b}_{1}. We say that such a pair of Borel subalgebras $\left(\mathfrak{b}, \mathfrak{b}_{1}\right)$ is compatible with the pair of Cartan subalgebras $\left(\mathfrak{h}, \mathfrak{h}_{1}\right)$; or just that it is compatible.

Suppose again that \mathfrak{g} is semisimple and $\mathfrak{g}_{1} \subseteq \mathfrak{g}$ is reductive in it. For simplicity we will here also assume that \mathbb{K} is algebraically closed. It is interesting to know whether $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$ satisfies the condition (Bor). And if not, given a Borel subalgebra \mathfrak{b}_{1} of \mathfrak{g}_{1}, can we determine the set of all Borel subalgebras \mathfrak{b} of \mathfrak{g} containing \mathfrak{b}_{1} ? Let us be more precise. For any reductive \mathbb{K}-Lie algebra \mathfrak{r} by $\mathcal{B}(\mathfrak{r})$ we denote the set of all its Borel subalgebras. Now assume that a pair ($\mathfrak{g}, \mathfrak{g}_{1}$) satisfies the condition (Bor). Then the map

$$
\mathrm{B}=\mathrm{B}_{\mathfrak{g}_{1}}^{\mathfrak{g}}: \mathcal{B}\left(\mathfrak{g}_{1}\right) \rightarrow \mathcal{B}(\mathfrak{g})
$$

given by $B\left(\mathfrak{b}_{1}\right)=\mathfrak{b}$, with \mathfrak{b}_{1} and \mathfrak{b} as in (Bor), is well defined. More generally now suppose that a pair $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$ satisfies $(\mathbf{Q 1})$. For any $\mathfrak{b}_{1} \in \mathcal{B}\left(\mathfrak{g}_{1}\right)$ by $\widehat{\mathrm{B}}\left(\mathfrak{b}_{1}\right)$, or $\mathcal{S}_{\text {Bor }}^{\mathfrak{g}}\left(\mathfrak{b}_{1}\right)$, we denote the subset of $\mathcal{B}(\mathfrak{g})$ consisting of all Borel subalgebras \mathfrak{b} containing \mathfrak{b}_{1}; i.e., consider a map

$$
\widehat{\mathrm{B}}=\widehat{\mathrm{B}}_{\mathfrak{g}_{1}}^{\mathfrak{g}}: \mathfrak{b}_{1} \mapsto \widehat{\mathrm{~B}}\left(\mathfrak{b}_{1}\right)
$$

The following theorem is our first main result. It summarizes our knowledge about the class of pairs ($\mathfrak{g}, \mathfrak{g}_{1}$) satisfying (Bor), and the above defined maps B and \widehat{B}; see Corollary 2.10 and Propositions 2.11, 2.15 and 2.17. In particular the part (iii) is a geometric statement saying that for a pair $\left(\mathfrak{g}, \mathfrak{g}_{1}\right)$ satisfying (Bor) the flag variety $\mathcal{B}\left(\mathfrak{g}_{1}\right)$ sits inside

https://daneshyari.com/en/article/6414526

Download Persian Version:

https://daneshyari.com/article/6414526

Daneshyari.com

[^0]: E-mail address: sirola@math.hr.
 ${ }^{1}$ The author was supported in part by the Ministry of Science, Education and Sports, Republic of Croatia, Grant No. 037-0372781-2811 and in part by the Croatian Science Foundation Grant No. 2634.

