On the average character degree and the average class size in finite groups ${ }^{\text {st }}$

Guohua Qian
Dept. Mathematics, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China

A R T I C L E I N F O

Article history:

Received 14 April 2014
Available online 24 November 2014
Communicated by Gunter Malle

MSC:

20C15
20E45
Keywords:
Finite group
Character degree
Class size

Abstract

Let $\operatorname{acd}(G)$ and $\operatorname{acs}(G)$ denote the average irreducible character degree and the average conjugacy class size, respectively, of a finite group G. The main objective of this paper is to find the lower bounds of $\operatorname{acd}(G)$ and $\operatorname{acs}(G)$ for a non- r-solvable group G where r is a prime. We show that $\operatorname{PSL}(2, r)$, where $r \geq 5$, is a non- r-solvable group with the smallest average character degree and the smallest average class size.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, G always denotes a finite group, all characters are complex characters, and we use Isaacs [13] as a source for standard notation and results from character theory. We write

$$
\operatorname{acd}(G)=\frac{\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)}{|\operatorname{Irr}(G)|}
$$

[^0]so that $\operatorname{acd}(G)$ is the average irreducible character degree of G. K. Magaard and H.P. Tong-Viet proved in [16, Theorem 1.4] that if $\operatorname{acd}(G) \leq 2$, then G is solvable. Recently, I.M. Isaacs, M. Loukaki and A. Moreto [14] improved the result and showed that if $\operatorname{acd}(G) \leq 3$ then G is solvable. They also conjectured that G is solvable whenever $\operatorname{acd}(G)<16 / 5=\operatorname{acd}(P S L(2,5))$.

Recall that there is often an analogy between results about character degrees and those about conjugacy class sizes. Denote by $k(G)$ the number of conjugacy classes of G. We have $k(G)=|\operatorname{Irr}(G)|$. In particular, writing $\operatorname{acs}(G)$ to denote the average class size of a finite group G, we have

$$
\operatorname{acs}(G)=\frac{|G|}{k(G)}=\frac{\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}}{|\operatorname{Irr}(G)|} \geq \frac{(1 /|\operatorname{Irr}(G)|)\left(\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)\right)^{2}}{|\operatorname{Irr}(G)|}=(\operatorname{acd}(G))^{2},
$$

where the inequality holds by Cauchy-Schwarz. As shown in [11] and $[9],(\operatorname{acs}(G))^{-1}$ is just the probability that a randomly chosen pair of elements of G commute. There are many results about $\operatorname{acs}(G)$ or $(\operatorname{acs}(G))^{-1}$ (see $\left.[11,9,10]\right)$. For example, it is known that G is solvable whenever $\operatorname{acs}(G)<12=\operatorname{acs}(\operatorname{PSL}(2,5))$ (see $[9,10]$).

Let r be a prime divisor of $|G|$. The main objective of this paper is to find the lower bounds of $\operatorname{acd}(G)$ and $\operatorname{acs}(G)$ for a non- r-solvable group G. We will show that $P S L(2, r)$, where $r \geq 5$, is a non- r-solvable group with the smallest average character degree and the smallest average class size.

Let r be a prime. We define

$$
f(r)= \begin{cases}\left(r^{2}+r+2\right) /(r+5), & \text { if } r \equiv 1(\bmod 4) \\ \left(r^{2}+r\right) /(r+5), & \text { if } r \geq 7 \text { and } r \equiv 3(\bmod 4) \\ 16 / 5=f(5), & \text { if } r=2,3\end{cases}
$$

and
$g_{0}(r)=\left\{\begin{array}{ll}r\left(r^{2}-1\right) /(r+5), & \text { if } r \geq 5, \\ 12=g_{0}(5), & \text { if } r=2,3,\end{array} \quad g(r)= \begin{cases}r\left(r^{2}-1\right) /(r+4), & \text { if } r \geq 5, \\ 40 / 3=g(5), & \text { if } r=2,3 .\end{cases}\right.$
Note that for $r \geq 5$, we have (see Lemma 2.4)

$$
f(r)=\operatorname{acd}(P S L(2, r)), \quad g_{0}(r)=\operatorname{acs}(P S L(2, r)), \quad g(r)=\operatorname{acs}(S L(2, r))
$$

The following facts about $f(r), g_{0}(r)$ and $g(r)$ are elementary, and will be used freely in the proofs.
(a) If $r \geq 5$, then $r-1>\sqrt{g(r)}>\sqrt{g_{0}(r)}>f(r)$; and if $r \geq 7$, then $r-2>f(r)$.
(b) For primes r_{1}, r_{2} with $r_{1}>r_{2} \geq 5, f\left(r_{1}\right)>f\left(r_{2}\right), g\left(r_{1}\right)>g\left(r_{2}\right), f\left(r_{1}\right)>\sqrt{g\left(r_{2}\right)}$.
(c) $2 f(r)>\sqrt{g(r)}$.

https://daneshyari.com/en/article/6414573

Download Persian Version:

https://daneshyari.com/article/6414573

Daneshyari.com

[^0]: * Project supported by the NSF of China (Nos. 11471054, 11171364).

 E-mail address: ghqian2000@sohu.com.

