

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Superpotentials, Calabi–Yau algebras, and PBW deformations

J. Karmazyn

ARTICLE INFO

Article history: Received 21 June 2013 Available online 2 June 2014 Communicated by Michel Van den Bergh

Keywords:
Path algebra
Superpotential
Calabi—Yau algebras
Koszul algebras
PBW deformations

ABSTRACT

The paper [9] by Bocklandt, Schedler and Wemyss considers path algebras with relations given by the higher derivations of a superpotential, giving a condition for such an algebra to be Calabi–Yau. In particular they show that the algebra $\mathbb{C}[V] \rtimes G$, for V a finite dimensional \mathbb{C} vector space and G a finite subgroup of $\mathrm{GL}(V)$, is Morita equivalent to a path algebra with relations given by a superpotential, and is Calabi–Yau for $G < \mathrm{SL}(V)$. In this paper we extend these results, giving a condition for a PBW deformation of a Calabi–Yau, Koszul path algebra with relations given by a superpotential to have relations given by a superpotential, and proving these are Calabi–Yau in certain cases.

We apply our methods to symplectic reflection algebras, where we show that every symplectic reflection algebra is Morita equivalent to a path algebra whose relations are given by the higher derivations of an inhomogeneous superpotential. In particular we show these are Calabi–Yau regardless of the deformation parameter.

Also, for G a finite subgroup of $\mathrm{GL}_2(\mathbb{C})$ not contained in $\mathrm{SL}_2(\mathbb{C})$, we consider PBW deformations of a path algebra with relations which is Morita equivalent to $\mathbb{C}[x,y] \rtimes G$. We show there are no non-trivial PBW deformations when G is a small subgroup.

© 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Contents

	1.1.	Introduction	101
	1.2.	Main results	102
	1.3.	Contents	103
2.	Prelin	ninaries	103
	2.1.	Quivers and superpotentials	103
	2.2.	Calabi–Yau algebras	107
	2.3.	Koszul algebras	108
	2.4.	Superpotentials and higher order derivations	109
	2.5.	PBW deformations	111
3.	Main	results	113
	3.1.	Deformations of superpotential algebras	114
	3.2.	CY property of deformations	117
4.	Applie	cation: symplectic reflection algebras	122
	4.1.	Symplectic reflection algebras as superpotential algebras	123
		4.1.1. Examples	124
5.	Applie	cation: PBW deformations of skew group rings for GL ₂	127
Acknowledgments			130
Appendix A. McKay quivers for finite small subgroups of $\mathrm{GL}_2(\mathbb{C})$			130
References			134

1. Introduction

1.1. Introduction

In this paper we consider path algebras of quivers with certain relations, in particular studying relations produced from a superpotential. Given a quiver Q, a homogeneous superpotential of degree n is an element, $\Phi_n = \sum c_{a_1...a_n} a_1 \dots a_n$, in the path algebra of Q satisfying the n superpotential condition: $c_{aq} = (-1)^{n-1}c_{qa}$ for all arrows a and paths q. From such a superpotential Φ_n and a non-negative integer k we construct an algebra $\mathcal{D}(\Phi_n, k) := \frac{\mathbb{C}Q}{R}$ as a path algebra with relations R. These relations are constructed by the process of differentiation, where we define the left derivative of a path p by a path q, denoted $\delta_q p$, to be t if p = qt and 0 otherwise, and the relations are given by $R = \langle \{\delta_p \Phi_n : |p| = k\} \rangle$.

Algebras of this form are considered in [9], where they are related to Calabi–Yau (CY), N-Koszul algebras. In [9] a complex, \mathcal{W}^{\bullet} , is defined which depends only on the superpotential, and a path algebra with relations is N-Koszul and CY if and only if it is of the form $\mathcal{D}(\Phi_n, k)$ for a superpotential Φ_n and \mathcal{W}^{\bullet} is a resolution.

Skew group algebras, $\mathbb{C}[V] \rtimes G$, for G a finite subgroup of $\mathrm{GL}(V)$, are Morita equivalent to path algebras of this form. These are 2-Koszul, and CY when $G < \mathrm{SL}(V)$, and hence their relations can be given by a superpotential. An explicit way to calculate this superpotential is given in [9, Theorem 3.2].

We prove two results concerning the PBW deformations of (n-k)-Koszul, (k+2)-CY algebras of the form $\mathcal{D}(\Phi_n, k)$. We define an inhomogeneous superpotential of degree n to be an element of the path algebra $\Phi' := \Phi_n + \phi_{n-1} + \ldots + \phi_k$, such that each $\phi_j := \sum c_p p$ is a sum of elements of the path algebra of length j, and each ϕ_j satisfies the n superpotential condition. Such a superpotential defines relations $P = \langle \{\delta_p \Phi' : |p| = k\} \rangle$,

Download English Version:

https://daneshyari.com/en/article/6414587

Download Persian Version:

https://daneshyari.com/article/6414587

<u>Daneshyari.com</u>