

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Algebra

www.elsevier.com/locate/jalgebra

A remark on Rickard complexes

Yuanyang Zhou¹

Department of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

article info abstract

Article history: Received 21 May 2013 Available online 14 November 2013 Communicated by Michel Broué

Keywords: Finite group Block Rickard complex Vertex

In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block *b* and its Brauer correspondent and whose vertices have the same order as defect groups of the block *b*. The homology of such a Rickard complex vanishes at all degree but degree *q*, and the homology at degree *q* induces a basic Morita equivalence between the block algebras in the sense of Puig.

© 2013 Elsevier Inc. All rights reserved.

1. In [\[5\],](#page--1-0) J. Rickard exhibits a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebra of a *p*-block of a finite *p*-nilpotent group and the group algebra of its defect group, which is isomorphic to a Morita equivalence not induced by a *p*-permutation module. Then in [\[1\],](#page--1-0) Harris and Linckelmann extend Rickard's technique and show a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebras of a block for finite *p*-solvable groups with abelian defect groups and its Brauer correspondent, which is also isomorphic to a Morita equivalence not induced by a *p*-permutation module. The two splendid Rickard complexes have vertex $\Delta(Q)$ in terms of Puig (see Paragraph [7](#page--1-0) below), where Q is a defect group of the blocks and $\Delta(Q)$ is the diagonal subgroup of $Q \times Q$. In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block *b* and its Brauer correspondent and whose vertices have the same order as defect groups of the block *b*.

2. We recollect some notation in [\[4\].](#page--1-0) Let *p* be a prime number and let *k* be an algebraically closed residue field *k* of characteristic *p*. From the point of view of [\[4\],](#page--1-0) complexes are considered as \mathcal{D} -modules where, denoting by \mathfrak{F} the commutative *k*-algebra of all the *k*-valued functions on the set **Z** of all rational integers, \mathcal{D} is the *k*-algebra containing \mathcal{F} as a unitary *k*-subalgebra and an element *d* such that

0021-8693/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.jalgebra.2013.10.015>

E-mail address: [zhouyuanyang@mail.ccnu.edu.cn.](mailto:zhouyuanyang@mail.ccnu.edu.cn)

 1 The author is supported by NSFC (No. 11071091) and by China Scholarship Council.

$$
\mathfrak{D} = \mathfrak{F} \oplus \mathfrak{F}d, \qquad d^2 = 0 \quad \text{and} \quad df = \mathrm{sh}(f)d \neq 0 \quad \text{for any } f \in \mathfrak{F} - \{0\}
$$

where sh denotes the automorphism on the *k*-algebra \mathfrak{F} mapping $f \in \mathfrak{F}$ onto the *k*-valued function sending *z* ∈ **Z** to $f(z + 1)$; moreover, we denote by *s* and i_z , for any $z \in \mathbb{Z}$, the *k*-valued functions mapping $z' \in \mathbf{Z}$ on $(-1)^{z'}$ and $\delta^{z'}_z$ respectively. Except for all the group algebras over \mathfrak{D} , we assume that all the modules and the algebras over *k* are finitely generated. If *A* is a *k*-algebra we denote by *A*[∗] the group of invertible elements of *A*, and by *A*◦ the opposite *k*-algebra. Note that we have an isomorphism $t : \mathfrak{D} \cong \mathfrak{D}^\circ$ mapping $f \in \mathfrak{F}$ on the *k*-valued function sending $z \in \mathfrak{Z}$ to $f(-z)$, and *d* on *sd*.

3. A \mathcal{D} -interior algebra is a *k*-algebra *A* endowed with a unitary *k*-algebra homomorphism $\rho : \mathcal{D} \to A$; for any $x, y \in \mathcal{D}$ and any $a \in A$, we write $x \cdot a \cdot y$ instead of $\rho(x)a\rho(y)$. Note that the isomorphism ^t : D ∼= D◦ then determines a D-interior algebra structure for *^A*◦. Moreover, we have a *^k*-algebra homomorphism $\mathfrak{D} \to k$ mapping $f + f'd$ on $f(0)$ for any $f, f' \in \mathfrak{F}$, so that any *k*-algebra admits a *trivial* structure of D-interior algebra. The D-interior algebra structure on *A* induces a D-module structure on *A* by the equalities

$$
f(a) = \sum_{z,z' \in \mathbf{Z}} f(z)i_{z'} \cdot a \cdot i_{z'-z} \quad \text{and} \quad d(a) = (d \cdot a - a \cdot d) \cdot s
$$

for any $a \in A$ and any $f \in \mathfrak{F}$. The *k*-algebra *A* endowed with this \mathfrak{D} -module is a \mathfrak{D} -algebra in the sense of Puig (see [\[4, 11.2.4\]\)](#page--1-0).

4. Let *G* be a finite group; recall that a *kG*-interior algebra is a *k*-algebra endowed with a unitary k -algebra homomorphism from kG . Similarly, a $\mathfrak{D}G$ -interior algebra is a k -algebra A endowed with a unitary *k*-algebra homomorphism $\rho : \mathfrak{D}G \to A$ (but *A* is always finitely generated!); for any $x \in \mathfrak{D}G$ and $a \in A$, we write *x*·*a* and $a \cdot x$ instead of $\rho(x)a$ and $a\rho(x)$ respectively. If A and A' are $\mathfrak{D}G$ -interior algebras, the tensor product $A \otimes_k A'$ admits a $\mathfrak{D}G$ -interior algebra structure given by

$$
f \cdot (a \otimes a') = \sum_{z,z' \in \mathbf{Z}} f(z+z') i_z \cdot a \otimes i_{z'} \cdot a', \qquad d \cdot (a \otimes a') = d \cdot a \otimes s \cdot a' + a \otimes d \cdot a'
$$

and $g \cdot (a \otimes a') = g \cdot a \otimes g \cdot a'$ for any $f \in \mathfrak{F}$, any $g \in G$ and any $a, a' \in A$. Here the first equality makes sense since in the sum above all but a finite number of terms vanish and since we have $sh(s) = -s$. For any subgroup *H* of *G*, we denote by A^H the centralizer of $\rho(H)$ in *A*; obviously $\rho(x) \in A^H$ for any $x \in \mathfrak{DC}_G(H)$ and thus the restriction of ρ to $\mathfrak{DC}_G(H)$ induces a $\mathfrak{DC}_G(H)$ -interior algebra structure on A ^{*H*}. Let *B* and *C* be two *kG*-interior algebras. A *k*-algebra homomorphism $f : B \rightarrow C$ is a *kG*-interior algebra homomorphism if *f* preserves the *kG*-interior algebra structures on *B* and *C*; furthermore, if *f* is injective and $f(B) = f(1)Cf(1)$, then *f* is a *kG*-interior algebra embedding. Similarly $\mathfrak{D}G$ -interior algebra homomorphisms and D*G*-interior algebra embeddings are defined.

5. Let us denote by $\mathbb{C}_0(A)$ the centralizer of the image of \mathfrak{D} in *A*; since the images of \mathfrak{D} and *G* centralize each other, $\mathbb{C}_0(A)$ inherits a *kG*-interior algebra structure and, according to the terminology in [\[4\],](#page--1-0) the pointed groups, their inclusions, the local pointed groups, etc. over the D*G*-interior algebra *A* are nothing but the pointed groups, their inclusions, the local pointed groups, etc. over the *kG*-interior algebra $\mathbb{C}_0(A)$. However, if H_β is a pointed group over *A*, so that *β* is a conjugacy class of primitive idempotents in $\mathbb{C}_0(A)^H$, the *k*-algebra $A_\beta = iAi$ for any $i \in \beta$ inherits a $\mathfrak{D}H$ -interior algebra structure mapping $y \in \mathcal{D}H$ on $y \cdot i = i \cdot y$; and the *k*-algebra A_β is called an embedded algebra associated with *Hβ* . For any subgroup *H* of *G*, we call contractible any point contained in the two-sided ideal

$$
\mathbb{B}_0(A^H) = \mathbb{C}_0(A)^H \cap \{d \cdot a + a \cdot d \mid a \in A^H\}
$$

Download English Version:

<https://daneshyari.com/en/article/6414747>

Download Persian Version:

<https://daneshyari.com/article/6414747>

[Daneshyari.com](https://daneshyari.com)