

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A remark on Rickard complexes

Yuanyang Zhou¹

Department of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

ARTICLE INFO

Article history: Received 21 May 2013 Available online 14 November 2013 Communicated by Michel Broué

Keywords: Finite group Block Rickard complex Vertex

ABSTRACT

In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block b and its Brauer correspondent and whose vertices have the same order as defect groups of the block b. The homology of such a Rickard complex vanishes at all degree but degree q, and the homology at degree q induces a basic Morita equivalence between the block algebras in the sense of Puig.

© 2013 Elsevier Inc. All rights reserved.

1. In [5], J. Rickard exhibits a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebra of a *p*-block of a finite *p*-nilpotent group and the group algebra of its defect group, which is isomorphic to a Morita equivalence not induced by a *p*-permutation module. Then in [1], Harris and Linckelmann extend Rickard's technique and show a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebras of a block for finite *p*-solvable groups with abelian defect groups and its Brauer correspondent, which is also isomorphic to a Morita equivalence not induced by a *p*-permutation module. The two splendid Rickard complexes have vertex $\Delta(Q)$ in terms of Puig (see Paragraph 7 below), where Q is a defect group of the blocks and $\Delta(Q)$ is the diagonal subgroup of $Q \times Q$. In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block *b* and its Brauer correspondent and whose vertices have the same order as defect groups of the block *b*.

2. We recollect some notation in [4]. Let *p* be a prime number and let *k* be an algebraically closed residue field *k* of characteristic *p*. From the point of view of [4], complexes are considered as \mathfrak{D} -modules where, denoting by \mathfrak{F} the commutative *k*-algebra of all the *k*-valued functions on the set **Z** of all rational integers, \mathfrak{D} is the *k*-algebra containing \mathfrak{F} as a unitary *k*-subalgebra and an element *d* such that

0021-8693/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.10.015

E-mail address: zhouyuanyang@mail.ccnu.edu.cn.

¹ The author is supported by NSFC (No. 11071091) and by China Scholarship Council.

$$\mathfrak{D} = \mathfrak{F} \oplus \mathfrak{F} d, \quad d^2 = 0 \text{ and } df = \operatorname{sh}(f)d \neq 0 \text{ for any } f \in \mathfrak{F} - \{0\}$$

where sh denotes the automorphism on the *k*-algebra \mathfrak{F} mapping $f \in \mathfrak{F}$ onto the *k*-valued function sending $z \in \mathbf{Z}$ to f(z + 1); moreover, we denote by *s* and i_z , for any $z \in \mathbf{Z}$, the *k*-valued functions mapping $z' \in \mathbf{Z}$ on $(-1)^{z'}$ and $\delta_z^{z'}$ respectively. Except for all the group algebras over \mathfrak{D} , we assume that all the modules and the algebras over *k* are finitely generated. If *A* is a *k*-algebra we denote by A^* the group of invertible elements of *A*, and by A° the opposite *k*-algebra. Note that we have an isomorphism $t : \mathfrak{D} \cong \mathfrak{D}^\circ$ mapping $f \in \mathfrak{F}$ on the *k*-valued function sending $z \in \mathbf{Z}$ to f(-z), and *d* on *sd*.

3. A \mathfrak{D} -interior algebra is a *k*-algebra *A* endowed with a unitary *k*-algebra homomorphism $\varrho : \mathfrak{D} \to A$; for any $x, y \in \mathfrak{D}$ and any $a \in A$, we write $x \cdot a \cdot y$ instead of $\varrho(x)a\varrho(y)$. Note that the isomorphism $t : \mathfrak{D} \cong \mathfrak{D}^\circ$ then determines a \mathfrak{D} -interior algebra structure for A° . Moreover, we have a *k*-algebra homomorphism $\mathfrak{D} \to k$ mapping f + f'd on f(0) for any $f, f' \in \mathfrak{F}$, so that any *k*-algebra admits a *trivial* structure of \mathfrak{D} -interior algebra. The \mathfrak{D} -interior algebra structure on A induces a \mathfrak{D} -module structure on A by the equalities

$$f(a) = \sum_{z,z' \in \mathbf{Z}} f(z)i_{z'} \cdot a \cdot i_{z'-z} \quad \text{and} \quad d(a) = (d \cdot a - a \cdot d) \cdot s$$

for any $a \in A$ and any $f \in \mathfrak{F}$. The *k*-algebra *A* endowed with this \mathfrak{D} -module is a \mathfrak{D} -algebra in the sense of Puig (see [4, 11.2.4]).

4. Let *G* be a finite group; recall that a *kG*-interior algebra is a *k*-algebra endowed with a unitary *k*-algebra homomorphism from *kG*. Similarly, a $\mathfrak{D}G$ -interior algebra is a *k*-algebra *A* endowed with a unitary *k*-algebra homomorphism $\rho : \mathfrak{D}G \to A$ (but *A* is always finitely generated!); for any $x \in \mathfrak{D}G$ and $a \in A$, we write $x \cdot a$ and $a \cdot x$ instead of $\rho(x)a$ and $a\rho(x)$ respectively. If *A* and *A'* are $\mathfrak{D}G$ -interior algebras, the tensor product $A \otimes_k A'$ admits a $\mathfrak{D}G$ -interior algebra structure given by

$$f \cdot (a \otimes a') = \sum_{z, z' \in \mathbf{Z}} f(z + z') i_z \cdot a \otimes i_{z'} \cdot a', \qquad d \cdot (a \otimes a') = d \cdot a \otimes s \cdot a' + a \otimes d \cdot a'$$

and $g \cdot (a \otimes a') = g \cdot a \otimes g \cdot a'$ for any $f \in \mathfrak{F}$, any $g \in G$ and any $a, a' \in A$. Here the first equality makes sense since in the sum above all but a finite number of terms vanish and since we have sh(s) = -s. For any subgroup H of G, we denote by A^H the centralizer of $\rho(H)$ in A; obviously $\rho(x) \in A^H$ for any $x \in \mathfrak{D}C_G(H)$ and thus the restriction of ρ to $\mathfrak{D}C_G(H)$ induces a $\mathfrak{D}C_G(H)$ -interior algebra structure on A^H . Let B and C be two kG-interior algebras. A k-algebra homomorphism $f : B \to C$ is a kG-interior algebra homomorphism if f preserves the kG-interior algebra structures on B and C; furthermore, if f is injective and f(B) = f(1)Cf(1), then f is a kG-interior algebra embedding. Similarly $\mathfrak{D}G$ -interior algebra homomorphisms and $\mathfrak{D}G$ -interior algebra embeddings are defined.

5. Let us denote by $\mathbb{C}_0(A)$ the centralizer of the image of \mathfrak{D} in A; since the images of \mathfrak{D} and G centralize each other, $\mathbb{C}_0(A)$ inherits a kG-interior algebra structure and, according to the terminology in [4], the pointed groups, their inclusions, the local pointed groups, etc. over the $\mathfrak{D}G$ -interior algebra A are nothing but the pointed groups, their inclusions, the local pointed groups, etc. over the kG-interior algebra $\mathbb{C}_0(A)$. However, if H_β is a pointed group over A, so that β is a conjugacy class of primitive idempotents in $\mathbb{C}_0(A)^H$, the k-algebra $A_\beta = iAi$ for any $i \in \beta$ inherits a $\mathfrak{D}H$ -interior algebra associated with H_β . For any subgroup H of G, we call contractible any point contained in the two-sided ideal

$$\mathbb{B}_0(A^H) = \mathbb{C}_0(A)^H \cap \{d \cdot a + a \cdot d \mid a \in A^H\}$$

Download English Version:

https://daneshyari.com/en/article/6414747

Download Persian Version:

https://daneshyari.com/article/6414747

Daneshyari.com