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Let Q be a simple algebraic group of type A or C over a field
of good positive characteristic. Let x ∈ q = Lie(Q ) and consider
the centraliser qx = {y ∈ q: [xy] = 0}. We show that the invariant
algebra S(qx)

qx is generated by the pth power subalgebra and the
mod p reduction of the characteristic zero invariant algebra. The
latter algebra is known to be polynomial [17] and we show that
it remains so after reduction. Using a theory of symmetrisation
in positive characteristic we prove the analogue of this result
in the enveloping algebra, where the p-centre plays the role of
the pth power subalgebra. In Zassenhaus’ foundational work [30],
the invariant theory and representation theory of modular Lie
algebras were shown to be explicitly intertwined. We exploit his
theory to give a precise upper bound for the dimensions of simple
qx-modules. An application to the geometry of the Zassenhaus
variety is given.
When g is of type A and g = k⊕ p is a symmetric decomposition
of orthogonal type we use similar methods to show that for every
nilpotent e ∈ k the invariant algebra S(pe)

ke is generated by the
pth power subalgebra and S(pe)

Ke which is also shown to be
polynomial.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In [17] Premet asked the following question: if Q is a reductive group over C and x ∈ q then is S(qx)
Q x

a polynomial algebra on rank(q) variables? The authors of [17] answered this question in the affirma-
tive for simple groups of type A and C. Some partial results were obtained in types B and D. In a
completely separate work [1] Brown and Brundan proved the statement again in type A using very
different methods. A counterexample was found by Yakimova in [28]; here x is a long root vector in
type E8. Very recently a counterexample has been given by Charbonnel and Moreau in type D7 [4].
Making use of the theory of finite W -algebras and the techniques of reduction modulo p the au-
thors of the latter article were able to provide a very general criterion on x ∈ q for S(qx)

qx to be
a polynomial algebra.
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The purpose of this article is to bring the above invariant theoretic discussion into the character-
istic p realm, and exploit some combinatorial techniques to study the representation theory of the
centralisers qx in type A and C. When an algebraic group may be reduced modulo p, in an appropri-
ate sense, we have groups Q , Q p and their respective Lie algebras q, qp . If Q is reductive and the
characteristic of the field is very good for Q then it is known that S(qp)qp is generated by S(qp)p and
a natural choice of mod p reduction of S(q)Q , and that similar theorem holds for the invariants in the
enveloping algebra. This is the most concise description of the algebra of invariants which we could
hope for, and Kac asked whether this would hold for any algebraic Lie algebra provided p is suffi-
ciently large [13]. A counterexample is given by the three dimensional solvable algebraic Lie algebra
over C spanned by {h,a,b} with nonzero brackets [h,a] = a and [h,b] = b. In this case S(q)Q =C and
so after reducing modulo p the element ap−1b of S(qp) is an example of an invariant for qp which
is not generated in this way. Despite failing in general, we shall show that this nice behaviour holds
for centralisers in type A and C, thus giving us a complete description of the symmetric invariant
algebras in these cases.

Let us now introduce the notation required to state our first theorem. These notations shall be
used henceforth without exception. Let N ∈ N, let K be an algebraically closed field of characteristic
p > 0 and let V be an N-dimensional vector space. The group G = GL(V ) acts by conjugation on its
Lie algebra g = gl(V ). Choose a non-degenerate bilinear form (·,·) on V which is either symmetric or
skew. We write (u, v) = ε(v, u) with ε = ±1. The subgroup of G preserving the form shall be denoted
K , and is either an orthogonal group or a symplectic group. Whenever we discuss such a group, we
shall assume that char(K) �= 2. The Lie algebra shall be denoted k and is equal to the set of all x ∈ g

which are skew self-adjoint with respect to (·,·). If we choose a basis for V then (·,·) takes the form
(u, v) = u� J v where J is a matrix. There is a Lie algebra automorphism σ : g → g of order 2 defined
by

σ(X) = − J−1 X� J

which is independent of our choice of basis. Then k coincides with the +1 eigenspace of σ . The −1
eigenspace shall be denoted p. We have g = k⊕ p and p is a K -module.

If x ∈ g then we may identify gx with Lie(Gx); see [10, Theorem 2.5]. The dual space to gx will be
denoted g∗

x . If furthermore x ∈ k then we may identify kx with Lie(Kx) for the same reason and, since
σ(x) = x, the involution σ induces a decomposition gx = kx ⊕px which is Kx-stable. The dual space k∗x
identifies (as a Kx-module) with the annihilator of px in gx , whilst p∗

x identifies with the annihilator of
kx in g∗

x . By duality we identify the symmetric algebra S(gx) with K[g∗
x ] as Gx-modules, and identify

S(kx) and S(px) with K[k∗x ] and K[p∗
x ] as Kx-modules. Using these identifications we obtain restriction

maps S(gx) → S(kx) and S(gx) → S(px) which are Kx-module homomorphisms. Given a commutative
algebra A we denote by Ap the pth power subalgebra {ap: a ∈ A}.

Theorem 1. Suppose that ε = −1 so that K is of type C. If Q ∈ {G, K } is of rank � and x ∈ q = Lie(Q ) then

(1) K[q∗
x ]qx is free of rank p� over K[q∗

x ]p ;
(2) K[q∗

x ]Q x is a polynomial algebra on � generators;
(3) K[q∗

x ]qx ∼= K[q∗
x ]p ⊗(K[q∗

x ]p)Q x K[q∗
x ]Q x .

It is easily seen that the above theorem has a straightforward reduction to the nilpotent case, for
if x = xs + xn is the Jordan decomposition of x ∈ q then qx = (qxs )xn . But qxs is a direct sum of the
centre and of simple groups of types A or C, whilst the reductive rank of q is equal to that of qxs . An
inductive argument may then be used.

It will be convenient to discuss Lie algebras in some generality, and so we let q be an arbitrary Lie
algebra over K and let W be a q-module. For α ∈ W ∗ we define the stabiliser

qα = {
x ∈ q: α(xw) = 0 for all w ∈ W

}
.
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