

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Near-vector spaces determined by finite fields

K.-T. Howell^a, J.H. Meyer^{b,*}

^a Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
^b Department of Mathematics and Applied Mathematics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

ARTICLE INFO

Article history: Received 17 January 2012 Available online 15 October 2013 Communicated by Michel Van den Bergh

Keywords: Finite fields Near-vector spaces

ABSTRACT

We derive conditions on the integers q and r necessary and sufficient for the identity $(a^q + b^q)^r = (a^r + b^r)^q$ to hold over a finite field. As an application, we use the result to characterize all finite-dimensional near-vector spaces determined by an arbitrary finite field.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In [2], the concept of a vector space, i.e., linear space, is generalized by André to a structure comprising a bit more non-linearity, the so-called near-vector space. In [7] van der Walt showed how to construct an arbitrary finite-dimensional near-vector space, using a finite number of near-fields, all having isomorphic multiplicative semigroups. In [5] this construction is used to characterize all finite-dimensional near-vector spaces in case all near-fields are equal to \mathbb{Z}_p , p a prime. Our aim in this paper is to extend these results to the case where all the near-fields are equal to an arbitrary finite field, using properties of the equation $(a^q + b^q)^r = (a^r + b^r)^q$, where $a, b \in GF(p^n)$, the finite field with p^n elements.

The following section collects a series of results (some of which are well known) regarding finite fields. These will be needed in the final section.

2. Results related to $GF(p^n)$

Throughout this paper we fix a prime p, a positive integer n, and let $F = GF(p^n)$, the field with p^n elements. Also, ϕ will denote Euler's totient function.

0021-8693/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.09.019

^{*} Corresponding author.

Lemma 2.1. Let $(1 + b)^k = 1 + b^k$ for all $b \in F$, where $0 < k < p^n - 1$. Then $k \in \{1, p, p^2, ..., p^{n-1}\}$.

Proof. For k > 1, consider the polynomial $f(x) = (1 + x)^k - x^k - 1 \in F[x]$ of degree less than or equal to k - 1. If $f(x) \neq 0$, then it has at most k - 1 zeros in F. But it is given that f(b) = 0 for all $b \in F$, so that f has to be the zero polynomial. As $f(x) = \sum_{i=1}^{k-1} {k \choose i} x^i = 0$, we have that $p \mid {k \choose i}$ for all $1 \leq i \leq k - 1$, since char(F) = p. We note that $p \mid {k \choose 1}$ implies that $p \mid k$. Now assume that $k = p^t m$, where $t \geq 1$, and $p \nmid m$, m > 1. Then we have a contradiction between $p \mid {p^t \choose p^t}$ and ${p^t \choose p^t} \equiv m \pmod{p}$ [3, Theorem 13.8]. Consequently, $k \in \{1, p, p^2, \dots, p^{n-1}\}$. \Box

Theorem 2.2. Let $q_1, q_2 \in \{1, 2, ..., p^n - 1\}$ with $gcd(q_i, p^n - 1) = 1$ (i = 1, 2) and $q_1 < q_2$. Then $(a^{q_1} + b^{q_1})^{q_2} = (a^{q_2} + b^{q_2})^{q_1}$ for all $a, b \in F$ if and only if $q_1 \equiv q_2 p^l \pmod{p^n - 1}$ for some $l \in \{0, 1, ..., n - 1\}$.

Proof. If $q_1 \equiv q_2 p^l \pmod{p^n - 1}$ for some $0 \leq l \leq n - 1$, then $x^{q_1} = x^{q_2 p^l}$ for all $x \in F$. So,

$$(a^{q_2}+b^{q_2})^{q_1}=(a^{q_2}+b^{q_2})^{q_2p^l}=(a^{q_2p^l}+b^{q_2p^l})^{q_2}=(a^{q_1}+b^{q_1})^{q_2},$$

for all $a, b \in F$. Conversely, suppose that $(a^{q_1} + b^{q_1})^{q_2} = (a^{q_2} + b^{q_2})^{q_1}$ for all $a, b \in F$. Let $s \in \mathbb{Z}$ $(1 \leq s \leq p^n - 2)$ such that $q_2s \equiv 1 \pmod{p^n - 1}$. Let a = 1, $b = y^s$. Then $(1 + y^{q_1s})^{q_2} = (1 + y)^{q_1}$ for all $y \in F$. This implies that $1 + y^{q_1s} = (1 + y)^{q_1s}$ for all $y \in F$. Let $k \in \mathbb{Z}$ $(1 \leq k \leq p^n - 2)$ with $k \equiv q_1s \pmod{p^n - 1}$. Then $1 + y^k = (1 + y)^k$ for all $y \in F$. By Lemma 2.1, $k = p^l$ where $l \in \{0, 1, \dots, n-1\}$. So $p^l \equiv q_1s \pmod{p^n - 1}$ implying that $p^lq_2 \equiv q_1 \pmod{p^n - 1}$. \Box

Definition 2.3. A finite sequence of *m* integers $q_1, q_2, ..., q_m$ is called *suitable with respect to* $F = GF(p^n)$ if

- (a) $1 \le q_i \le p^n 1$ and $gcd(q_i, p^n 1) = 1$ for all i = 1, ..., m;
- (b) no q_i can be replaced by a smaller q'_i that also satisfies (a) and such that $q_i \equiv q'_i p^l \pmod{p^n 1}$ for some $l \in \{0, 1, ..., n 1\}$.

Suitable sequences are always written in non-decreasing order: $q_1 \leq q_2 \leq \cdots \leq q_m$.

Hence, to obtain a suitable sequence with respect to $GF(p^n)$, simply make a list of the smallest members of all the cosets determined by the subgroup $\langle p \rangle$ of the multiplicative group $U(p^n - 1) = \{k \in \mathbb{Z}: 1 \leq k \leq p^n - 1 \text{ and } gcd(k, p^n - 1) = 1\}$. Then select (possibly with repetition) any *m* members from this list, and write them down in non-decreasing order. Note that there will be $\phi(p^n - 1)/n$ elements in the list to choose from.

The next result can be found in most text books that contain a section on finite fields, such as [1].

Lemma 2.4. Each element of F has a q-th root in F if and only if $gcd(q, p^n - 1) = 1$.

This lemma can be used to prove:

Proposition 2.5. Let ψ be an automorphism of the group (F^*, \cdot) . Then there exists $q \in \mathbb{Z}$, with $1 \leq q \leq p^n - 1$ and $gcd(q, p^n - 1) = 1$, such that $\psi(x) = x^q$ for all $x \in F^*$.

Example 2.6. (See [4, pp. 67–68].) Consider $F = GF(3^2)$. The *q*'s with $1 \le q \le 3^2 - 1$ and $gcd(q, 3^2 - 1) = 1$, are q = 1, 3, 5, 7. So $\psi(x) = x^q$ for each of these *q*'s are exactly the automorphisms of the group (F^*, \cdot) . Take q = 5, for example:

Download English Version:

https://daneshyari.com/en/article/6414785

Download Persian Version:

https://daneshyari.com/article/6414785

Daneshyari.com