Near-vector spaces determined by finite fields

K.-T. Howell ${ }^{\text {a }}$, J.H. Meyer ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
${ }^{\text {b }}$ Department of Mathematics and Applied Mathematics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

A R T I C L E I N F O

Article history:

Received 17 January 2012
Available online 15 October 2013
Communicated by Michel Van den Bergh

Keywords:

Finite fields
Near-vector spaces

Abstract

We derive conditions on the integers q and r necessary and sufficient for the identity $\left(a^{q}+b^{q}\right)^{r}=\left(a^{r}+b^{r}\right)^{q}$ to hold over a finite field. As an application, we use the result to characterize all finitedimensional near-vector spaces determined by an arbitrary finite field.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In [2], the concept of a vector space, i.e., linear space, is generalized by André to a structure comprising a bit more non-linearity, the so-called near-vector space. In [7] van der Walt showed how to construct an arbitrary finite-dimensional near-vector space, using a finite number of near-fields, all having isomorphic multiplicative semigroups. In [5] this construction is used to characterize all finite-dimensional near-vector spaces in case all near-fields are equal to \mathbb{Z}_{p}, p a prime. Our aim in this paper is to extend these results to the case where all the near-fields are equal to an arbitrary finite field, using properties of the equation $\left(a^{q}+b^{q}\right)^{r}=\left(a^{r}+b^{r}\right)^{q}$, where $a, b \in G F\left(p^{n}\right)$, the finite field with p^{n} elements.

The following section collects a series of results (some of which are well known) regarding finite fields. These will be needed in the final section.

2. Results related to $G F\left(p^{\boldsymbol{n}}\right)$

Throughout this paper we fix a prime p, a positive integer n, and let $F=G F\left(p^{n}\right)$, the field with p^{n} elements. Also, ϕ will denote Euler's totient function.

[^0]Lemma 2.1. Let $(1+b)^{k}=1+b^{k}$ for all $b \in F$, where $0<k<p^{n}-1$. Then $k \in\left\{1, p, p^{2}, \ldots, p^{n-1}\right\}$.
Proof. For $k>1$, consider the polynomial $f(x)=(1+x)^{k}-x^{k}-1 \in F[x]$ of degree less than or equal to $k-1$. If $f(x) \neq 0$, then it has at most $k-1$ zeros in F. But it is given that $f(b)=0$ for all $b \in F$, so that f has to be the zero polynomial. As $f(x)=\sum_{i=1}^{k-1}\binom{k}{i} x^{i}=0$, we have that $p \left\lvert\,\binom{ k}{i}\right.$ for all $1 \leqslant i \leqslant k-1$, since $\operatorname{char}(F)=p$. We note that $p \left\lvert\,\binom{ k}{1}\right.$ implies that $p \mid k$. Now assume that $k=p^{t} m$, where $t \geqslant 1$, and $p \nmid m, m>1$. Then we have a contradiction between $p \left\lvert\,\binom{ p^{t} m}{p^{t} m}\right.$ and $\binom{p^{t} m}{p^{t}} \equiv m(\bmod p)$ [3, Theorem 13.8]. Consequently, $k \in\left\{1, p, p^{2}, \ldots, p^{n-1}\right\}$.

Theorem 2.2. Let $q_{1}, q_{2} \in\left\{1,2, \ldots, p^{n}-1\right\}$ with $\operatorname{gcd}\left(q_{i}, p^{n}-1\right)=1(i=1,2)$ and $q_{1}<q_{2}$. Then $\left(a^{q_{1}}+b^{q_{1}}\right)^{q_{2}}=\left(a^{q_{2}}+b^{q_{2}}\right)^{q_{1}}$ for all $a, b \in F$ if and only if $q_{1} \equiv q_{2} p^{l}\left(\bmod p^{n}-1\right)$ for some $l \in\{0,1, \ldots, n-1\}$.

Proof. If $q_{1} \equiv q_{2} p^{l}\left(\bmod p^{n}-1\right)$ for some $0 \leqslant l \leqslant n-1$, then $x^{q_{1}}=x^{q_{2} p^{l}}$ for all $x \in F$. So,

$$
\left(a^{q_{2}}+b^{q_{2}}\right)^{q_{1}}=\left(a^{q_{2}}+b^{q_{2}}\right)^{q_{2} p^{l}}=\left(a^{q_{2} p^{l}}+b^{q_{2} p^{l}}\right)^{q_{2}}=\left(a^{q_{1}}+b^{q_{1}}\right)^{q_{2}},
$$

for all $a, b \in F$. Conversely, suppose that $\left(a^{q_{1}}+b^{q_{1}}\right)^{q_{2}}=\left(a^{q_{2}}+b^{q_{2}}\right)^{q_{1}}$ for all $a, b \in F$. Let $s \in \mathbb{Z}(1 \leqslant$ $\left.s \leqslant p^{n}-2\right)$ such that $q_{2} s \equiv 1\left(\bmod p^{n}-1\right)$. Let $a=1, b=y^{s}$. Then $\left(1+y^{q_{1} s}\right)^{q_{2}}=(1+y)^{q_{1}}$ for all $y \in F$. This implies that $1+y^{q_{1} s}=(1+y)^{q_{1} s}$ for all $y \in F$. Let $k \in \mathbb{Z}\left(1 \leqslant k \leqslant p^{n}-2\right)$ with $k \equiv$ $q_{1} s\left(\bmod p^{n}-1\right)$. Then $1+y^{k}=(1+y)^{k}$ for all $y \in F$. By Lemma 2.1, $k=p^{l}$ where $l \in\{0,1, \ldots, n-1\}$. So $p^{l} \equiv q_{1} s\left(\bmod p^{n}-1\right)$ implying that $p^{l} q_{2} \equiv q_{1}\left(\bmod p^{n}-1\right)$.

Definition 2.3. A finite sequence of m integers $q_{1}, q_{2}, \ldots, q_{m}$ is called suitable with respect to $F=$ $G F\left(p^{n}\right)$ if
(a) $1 \leqslant q_{i} \leqslant p^{n}-1$ and $\operatorname{gcd}\left(q_{i}, p^{n}-1\right)=1$ for all $i=1, \ldots, m$;
(b) no q_{i} can be replaced by a smaller q_{i}^{\prime} that also satisfies (a) and such that $q_{i} \equiv q_{i}^{\prime} p^{l}\left(\bmod p^{n}-1\right)$ for some $l \in\{0,1, \ldots, n-1\}$.

Suitable sequences are always written in non-decreasing order: $q_{1} \leqslant q_{2} \leqslant \cdots \leqslant q_{m}$.
Hence, to obtain a suitable sequence with respect to $G F\left(p^{n}\right)$, simply make a list of the smallest members of all the cosets determined by the subgroup $\langle p\rangle$ of the multiplicative group $U\left(p^{n}-1\right)=$ $\left\{k \in \mathbb{Z}: 1 \leqslant k \leqslant p^{n}-1\right.$ and $\left.\operatorname{gcd}\left(k, p^{n}-1\right)=1\right\}$. Then select (possibly with repetition) any m members from this list, and write them down in non-decreasing order. Note that there will be $\phi\left(p^{n}-1\right) / n$ elements in the list to choose from.

The next result can be found in most text books that contain a section on finite fields, such as [1].
Lemma 2.4. Each element of F has a q-th root in F if and only if $\operatorname{gcd}\left(q, p^{n}-1\right)=1$.
This lemma can be used to prove:
Proposition 2.5. Let ψ be an automorphism of the group (F^{*}, .). Then there exists $q \in \mathbb{Z}$, with $1 \leqslant q \leqslant p^{n}-1$ and $\operatorname{gcd}\left(q, p^{n}-1\right)=1$, such that $\psi(x)=x^{q}$ for all $x \in F^{*}$.

Example 2.6. (See [4, pp. 67-68].) Consider $F=G F\left(3^{2}\right)$. The q 's with $1 \leqslant q \leqslant 3^{2}-1$ and $\operatorname{gcd}\left(q, 3^{2}-\right.$ $1)=1$, are $q=1,3,5,7$. So $\psi(x)=x^{q}$ for each of these q 's are exactly the automorphisms of the group (F^{*}, \cdot). Take $q=5$, for example:

https://daneshyari.com/en/article/6414785

Download Persian Version:

https://daneshyari.com/article/6414785

Daneshyari.com

[^0]: * Corresponding author.

