Products of elements of even order

George Glauberman

University of Chicago, 5734 S. University Ave., Chicago, IL, 60637, United States

A R T I C L E I N F O

Article history:

Received 8 February 2013
Available online 30 July 2013
Communicated by B. Külshammer
To Geoffrey Robinson on his 60th birthday

Abstract

The product of two non-conjugate elements of order two in a finite group must have even order. In this paper, we generalize this result for the product of two suitable elements of even order.

© 2013 Elsevier Inc. All rights reserved.

Keywords:
Involutions
Conjugate
Even order

1. Introduction

In this article, we consider groups satisfying the following hypothesis:
(H) (1) G is a finite group;
(2) u and v are involutions (elements of order two) in G;
(3) t is a 2 -element of G;
(4) there are no conjugates u^{\prime}, v^{\prime} of u, v such that $u^{\prime} v^{\prime}=t$.
(Recall that a 2 -element is an element whose order is a nonnegative power of 2 . Thus, the identity is a 2-element.)

For every subgroup H of G, let $O(H)$ be the largest normal subgroup of H of odd order. From the structure of a dihedral group, it is easy to see that under hypothesis (H), one can extend (4) to obtain:
(4') there are no conjugates u^{\prime}, v^{\prime} of u, v such that $u^{\prime} v^{\prime}=t w$ for some element w of odd order in $C_{G}(t)$.

Additional consequences of hypothesis (4) have been obtained by Richard Brauer in [2] using block theory. In this article, we use the methods of [2] to obtain the following further consequence:

[^0]Theorem 1. Assume hypothesis (H). Suppose
(a) w is an element of odd order in $C_{G}(t)$;
(b) $u^{\prime} \in O\left(C_{G}(u)\right)$ and $v^{\prime} \in O\left(C_{G}(v)\right)$.

Then $\left(u u^{\prime}\right)\left(v v^{\prime}\right) \neq t w$.

By taking the case when $t=1$, we obtain:

Corollary. Suppose u and v are involutions in a finite group G that are not conjugate in G. Assume that $u^{\prime} \in O\left(C_{G}(u)\right)$ and $v^{\prime} \in O\left(C_{G}(v)\right)$. Then $\left(u u^{\prime}\right)\left(v v^{\prime}\right)$ has even order.

All groups in this article are finite. For a group G, we denote the set of irreducible complex characters of G by $\operatorname{Irr}(G)$ and the set of all elements of odd order in G by $G_{2^{\prime}}$. For elements x, y, z of G, let

$$
f(x, y, z)=\sum \chi(x) \chi(y) \overline{\chi(z)} / \chi(1)
$$

where χ ranges over $\operatorname{Irr}(G)$.
Henceforth, we let G denote a fixed, but arbitrary, group.

2. Preliminary results

Let p be a prime. One may represent G by linear transformations of a vector space V over a splitting field of characteristic p. When G acts irreducibly on V, one obtains a complex-valued function on the set of p^{\prime}-elements of G, called an irreducible Brauer character, as described in [6, pp. 16-18]. Now consider the union of $\operatorname{Irr}(G)$ with the set of all irreducible Brauer characters of G. By considering their values on group elements, we may partition the elements of this union into equivalence classes, called p-blocks [6, pp. 48-49] or simply blocks, if p is given. For a block B, we denote the set of irreducible complex characters in B by $\operatorname{Irr}(B)$. The class that contains the principal complex character of G is called the principal p-block of G.

Now we require some well-known preliminary results. The first follows from [5, Theorem 4.2.12].

Proposition 1 (Class multiplication formula). Let x, y, z be elements of G and k be the number of ordered pairs $\left(x^{\prime}, y^{\prime}\right)$ such that x^{\prime} is conjugate to x in $G ; y^{\prime}$ is conjugate to y in G; and $x^{\prime} y^{\prime}=z$. Then

$$
k=\left|G: C_{G}(x)\right|\left|G: C_{G}(y)\right| f(x, y, z) /|G|
$$

Henceforth, let $B_{0}(G)$ denote the principal 2-block of G.
The next two results are special cases of properties of p-blocks for all primes p. Part (b) of Proposition 2 ultimately derives from [3].

Proposition 2. Let ϕ be an irreducible Brauer character of G for the prime 2.
(a) If ϕ lies in $B_{0}(G)$, then $\phi(x)=\phi(1)$ for every element x of $O(G)$.
(b) If ϕ lies outside $B_{0}(G)$, then

$$
\sum \phi(x)=0
$$

where the sum is taken over $G_{2^{\prime}}$.

https://daneshyari.com/en/article/6414806

Download Persian Version:

https://daneshyari.com/article/6414806

Daneshyari.com

[^0]: E-mail address: gg@math.uchicago.edu.
 0021-8693/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jalgebra.2013.07.015

