

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Products of elements of even order

George Glauberman

University of Chicago, 5734 S. University Ave., Chicago, IL, 60637, United States

ARTICLE INFO

Article history: Received 8 February 2013 Available online 30 July 2013 Communicated by B. Külshammer

To Geoffrey Robinson on his 60th birthday

Keywords: Involutions Conjugate Even order

1. Introduction

In this article, we consider groups satisfying the following hypothesis:

- (H) (1) *G* is a finite group;
 - (2) u and v are involutions (elements of order two) in G;
 - (3) t is a 2-element of G;
 - (4) there are no conjugates u', v' of u, v such that u'v' = t.

(Recall that a 2-element is an element whose order is a nonnegative power of 2. Thus, the identity is a 2-element.)

For every subgroup H of G, let O(H) be the largest normal subgroup of H of odd order. From the structure of a dihedral group, it is easy to see that under hypothesis (H), one can extend (4) to obtain:

(4') there are no conjugates u', v' of u, v such that u'v' = tw for some element w of odd order in $C_G(t)$.

Additional consequences of hypothesis (4) have been obtained by Richard Brauer in [2] using block theory. In this article, we use the methods of [2] to obtain the following further consequence:

ABSTRACT

The product of two non-conjugate elements of order two in a finite group must have even order. In this paper, we generalize this result for the product of two suitable elements of even order.

© 2013 Elsevier Inc. All rights reserved.

E-mail address: gg@math.uchicago.edu.

^{0021-8693/\$ –} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.07.015

Theorem 1. Assume hypothesis (H). Suppose

(a) w is an element of odd order in $C_G(t)$; (b) $u' \in O(C_G(u))$ and $v' \in O(C_G(v))$.

Then $(uu')(vv') \neq tw$.

By taking the case when t = 1, we obtain:

Corollary. Suppose u and v are involutions in a finite group G that are not conjugate in G. Assume that $u' \in O(C_G(u))$ and $v' \in O(C_G(v))$. Then (uu')(vv') has even order.

All groups in this article are finite. For a group G, we denote the set of irreducible complex characters of G by Irr(G) and the set of all elements of odd order in G by $G_{2'}$. For elements x, y, z of G, let

$$f(x, y, z) = \sum \chi(x) \chi(y) \overline{\chi(z)} / \chi(1)$$

where χ ranges over Irr(G).

Henceforth, we let *G* denote a fixed, but arbitrary, group.

2. Preliminary results

Let *p* be a prime. One may represent *G* by linear transformations of a vector space *V* over a splitting field of characteristic *p*. When *G* acts irreducibly on *V*, one obtains a complex-valued function on the set of p'-elements of *G*, called an *irreducible Brauer character*, as described in [6, pp. 16–18]. Now consider the union of Irr(*G*) with the set of all irreducible Brauer characters of *G*. By considering their values on group elements, we may partition the elements of this union into equivalence classes, called *p*-blocks [6, pp. 48–49] or simply blocks, if *p* is given. For a block *B*, we denote the set of irreducible complex characters in *B* by Irr(*B*). The class that contains the principal complex character of *G* is called the *principal p*-block of *G*.

Now we require some well-known preliminary results. The first follows from [5, Theorem 4.2.12].

Proposition 1 (*Class multiplication formula*). Let x, y, z be elements of G and k be the number of ordered pairs (x', y') such that x' is conjugate to x in G; y' is conjugate to y in G; and x'y' = z. Then

$$k = |G: C_G(x)||G: C_G(y)|f(x, y, z)/|G|.$$

Henceforth, let $B_0(G)$ denote the principal 2-block of *G*.

The next two results are special cases of properties of *p*-blocks for all primes *p*. Part (b) of Proposition 2 ultimately derives from [3].

Proposition 2. Let ϕ be an irreducible Brauer character of *G* for the prime 2.

(a) If ϕ lies in $B_0(G)$, then $\phi(x) = \phi(1)$ for every element x of O(G).

(b) If ϕ lies outside $B_0(G)$, then

$$\sum \phi(x) = 0,$$

where the sum is taken over $G_{2'}$.

Download English Version:

https://daneshyari.com/en/article/6414806

Download Persian Version:

https://daneshyari.com/article/6414806

Daneshyari.com