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1. Introduction

If G is a finite group, let T(G) be the group of equivalence classes of endotrivial kG-modules, where
k is a field of characteristic p (assumed algebraically closed for simplicity). The abelian group T(G) is
finitely generated, hence of the form T(G) =TT (G) & F, where TT(G) is the torsion subgroup and F is
a free abelian group. The purpose of this paper is to investigate the torsion-free part of T(G), and in
particular find generators for a suitable torsion-free direct summand F of T(G). The non-uniqueness
of F is actually an issue and so we work instead with the canonically defined free abelian group
TF(G) = T(G)/TT(G).

In many cases, TF(G) = Z, generated by the class of the syzygy module £2(k). Otherwise, by [9],
G has maximal elementary abelian p-subgroups of rank 2 and its Sylow p-subgroup P has a rather
special structure. In particular, the center Z(P) is cyclic, hence has a unique subgroup Z of order p.
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In order to find generators for TF(G), there are three known constructions, one using relative syzy-
gies, one using suitable subquotients of a syzygy module £2"(k), and one involving a class in group
cohomology restricting non-trivially to Z. We analyze the three constructions and extend as much as
possible the results about them. The first construction works well for p-groups and also for groups
with a normal Sylow p-subgroup, but it does not seem possible to extend the method to arbitrary
finite groups. The second construction needs the assumption that Z is normal in G and hence cannot
work otherwise. The third construction, which we call the cohomological pushout method, works well
in general, but only rationally, not integrally: it provides generators for Q ®z TF(G), but it produces
only a subgroup of finite index in TF(G). We can show that this subgroup is the whole of TF(G)
in some cases, but we also give examples where this is not so. The problem of describing genera-
tors of TF(G) in full generality remains open, but our discussion shows where the difficulties lie and
allows us to state specific questions to be solved.

We then prove that the endotrivial modules in the principal block form a subgroup To(G) of T(G)
and that To(G) has finite index. We conjecture that T(G) = To(G) + TT(G), in other words that TF(G)
can be generated by modules in the principal block. We prove that the conjecture holds in some
cases, in particular if Z is a normal subgroup.

Finally we discuss control of p-fusion and we conjecture that if P is a common Sylow p-subgroup
of G and G’ and if a group homomorphism ¢ : G — G’ induces an isomorphism Fp(G) — Fp(G)
between the canonical fusion systems of G and G’ on P, then ¢ induces an isomorphism TF(G') —
TF(G). We prove the conjecture in a few cases.

In a final section, we have gathered a number of examples illustrating various results of this paper.

A general remark about our methods may be useful. If Ng(P) denotes the normalizer of a Sylow
p-subgroup P of G, many results can be proved for N¢(P) but the passage from Ng(P) to G seems
difficult. It is known that the restriction map Resgc(m : T(G) —> T(N¢(P)) is injective, induced by
the Green correspondence, but the non-surjectivity of this map is a crucial issue and is an obstacle
for solving several of our problems (see Section 8).

2. Preliminaries

Throughout this paper, we let k denote an algebraically closed field of prime characteristic p. In
addition, we assume that all modules are finitely generated.

Given a finite group H, we write k for the trivial kH-module, or, whenever H needs to be clari-
fied, we write ky instead. Unless otherwise specified, the symbol ® is the tensor product ®; of the
underlying vector spaces, and in case of kH-modules, then H acts diagonally on the factors. If M is
a kH-module, and ¢ : Q — M its projective cover, then we let £2'(M), or simply £2(M), denote the
kernel of ¢ (called the first syzygy of M). Likewise, if ¥ : M — Q is the injective hull of M (recall
that kH is a self-injective ring so Q is also projective), then £2~1(M) denotes the cokernel of ©.
Inductively, we set 2"(M) = (2" 1(M)) and 2 "(M) = 2~ 1(2"t1(M)) for all integers n > 1.

If G is a finite group of order divisible by p, then a kG-module M is endotrivial if its endomorphism
algebra Endy(M) is isomorphic (as a kG-module) to the direct sum of the trivial module k; and
a projective kG-module. In other words, a kG-module M is endotrivial if and only if M* @ M =
k @ (proj), where M* denotes the k-dual Homy (M, k) of M, and (proj) some projective module. Recall
the following basic results (see Section 2 in [9]).

Lemma 2.1. Let G be a finite group of order divisible by p.
(1) Let M be a kG-module. If M is endotrivial, then M splits as the direct sum M, & (proj) for an indecom-
posable endotrivial kG-module M., which is unique up to isomorphism.
(2) The relation
M~N <<= M=EN,

on the class of endotrivial kG-modules is an equivalence relation. We let T (G) be the set of equivalence
classes. Every equivalence class contains a unique indecomposable module up to isomorphism.
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