

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

ALCEBRA

www.elsevier.com/locate/jalgebra

Hilbert depth of graded modules over polynomial rings in two variables

Julio José Moyano-Fernández^{*,1}, Jan Uliczka

Institut für Mathematik, Universität Osnabrück, Albrechtstrasse 28a, D-49076 Osnabrück, Germany

ARTICLE INFO

Article history: Received 9 January 2012 Available online 23 October 2012 Communicated by Bernd Ulrich

MSC: 13D40 16W50 20M99

Keywords: Commutative graded ring Hilbert series Numerical semigroup Finitely generated module Hilbert depth

ABSTRACT

In this article we mainly consider the positively \mathbb{Z} -graded polynomial ring $R = \mathbb{F}[X, Y]$ over an arbitrary field \mathbb{F} and Hilbert series of finitely generated graded *R*-modules. The central result is an arithmetic criterion for such a series to be the Hilbert series of some *R*-module of positive depth. In the generic case, that is deg(*X*) and deg(*Y*) being coprime, this criterion can be formulated in terms of the numerical semigroup generated by those degrees.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and review

We want to investigate how some of the results of [1] for Hilbert series of finitely generated graded modules over the standard \mathbb{Z} -graded polynomial ring can be generalised to the case where the ring of polynomials is endowed with an arbitrary positive \mathbb{Z} -grading.

Let $R = \mathbb{F}[X_1, ..., X_n]$ be the positively \mathbb{Z} -graded polynomial ring over some field \mathbb{F} , i.e. each X_i has degree $d_i \ge 1$ for every i = 1, ..., n. Moreover, let M be a finitely generated graded R-module.

^{*} Corresponding author.

E-mail addresses: jmoyanof@uos.de (J.J. Moyano-Fernández), juliczka@uos.de (J. Uliczka).

¹ Partially supported by the Spanish Government Ministerio de Educación y Ciencia (MEC) grant MTM2007-64704 in cooperation with the European Union in the framework of the founds "FEDER", and by the Deutsche Forschungsgemeinschaft (DFG).

^{0021-8693/\$ –} see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2012.09.026

Every homogeneous component of *M* is a finite-dimensional \mathbb{F} -vector space, and since *R* is positively graded and *M* is finitely generated, $M_i = 0$ for $j \ll 0$. Hence the *Hilbert function* of *M*

$$H(M, -): \mathbb{Z} \to \mathbb{Z}, \quad j \mapsto \dim_{\mathbb{F}}(M_j),$$

is a well-defined *integer Laurent function* (see [2, Definitions 5.1.1 and 5.1.12]). The formal Laurent series *associated to* H(M, -)

$$H_M(t) = \sum_{j \in \mathbb{Z}} H(M, j) t^j = \sum_{j \in \mathbb{Z}} (\dim_{\mathbb{F}} M_j) t^j \in \mathbb{Z}[[t]][t^{-1}]$$

is called the *Hilbert series* of *M*. Obviously it has no negative coefficients; such a series will be called *nonnegative* for short.

By the theorem of Hilbert–Serre (see [3, Thm. 4.1.1]), H_M may be written as a fraction of the form

$$\frac{Q_M(t)}{\prod_{i=1}^n (1-t^{d_i})},$$

with some $Q_M \in \mathbb{Z}[t, t^{-1}]$. As a consequence of this theorem and a well-known result in the theory of generating functions, see Proposition 4.4.1 of [4], there exists a quasi-polynomial *P* of period $d := \text{lcm}(d_1, \ldots, d_n)$ such that $\dim_{\mathbb{F}}(M_j) = P(j)$ for $j \gg 0$.

The ring *R* is *local, that is, it has a unique maximal graded ideal, namely $\mathfrak{m} := (X_1, \ldots, X_n)$. The *depth* of *M* is defined as the maximal length of an *M*-regular sequence in \mathfrak{m} , i.e. the grade of \mathfrak{m} on *M*, and denoted by depth(*M*) rather than grade(\mathfrak{m} , *M*). This deviation from the standard terminology, where "depth" is used exclusively in the context of true local rings, may be justified by the fact that grade(\mathfrak{m} , *M*) agrees with depth($M_{\mathfrak{m}}$), see [5, Prop. 1.5.15].

It is easy to see that (contrary to the Krull dimension) the depth of a module M is not encoded in its Hilbert series. Therefore it makes sense to introduce

$$\mathsf{Hdep}(M) := \max \left\{ r \in \mathbb{N} \; \middle| \; \begin{array}{c} \text{there is a f. g. gr. } R \text{-module } N \\ \text{with } H_N = H_M \text{ and } \operatorname{depth}(N) = r \end{array} \right\};$$

this number is called the *Hilbert depth* of *M*.

If the ring R is standard graded, then Hdep(M) turns out to coincide with the arithmetical invariant

$$p(M) := \max\{r \in \mathbb{N} \mid (1-t)^r H_M(t) \text{ is nonnegative}\},\$$

called the *positivity* of *M*, see Theorem 3.2 of [1]. The inequality $Hdep(M) \leq p(M)$ follows from general results on Hilbert series and regular sequences. The converse can be deduced from the main result of [1], Theorem 2.1, which states the existence of a representation

$$H_M(t) = \sum_{j=0}^{\dim(M)} \frac{Q_j(t)}{(1-t)^j} \quad \text{with nonnegative } Q_j \in \mathbb{Z}[t, t^{-1}].$$

We begin our investigation by establishing a similar decomposition theorem for Hilbert series of modules over any positively \mathbb{Z} -graded polynomial ring. This result has some consequences for the Hilbert depth, but it does not lead to an analogue of the equation Hdep(M) = p(M) – the occurrence of different factors in the denominator of H_M complicating matters. In Section 3 we restrict our attention to polynomial rings in two variables. For this special case we deduce an arithmetic characterisation of positive Hilbert depth. This criterion, surprisingly related to the theory of *numerical semigroups*, is the main result of our paper.

Download English Version:

https://daneshyari.com/en/article/6414901

Download Persian Version:

https://daneshyari.com/article/6414901

Daneshyari.com