

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Integer-valued polynomials on algebras

Sophie Frisch

Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

ARTICLE INFO

Article history: Received 27 July 2011 Available online 31 October 2012 Communicated by Luchezar L. Avramov

MSC: primary 13F20 secondary 16S50, 13B25, 13J10, 11C08, 11C20

Keywords: Integer-valued polynomials Spectrum Krull dimension Matrix algebras Polynomial rings *I*-adic topology Non-commutative algebras Non-commuting variables Polynomial functions Polynomial mappings

ABSTRACT

Let *D* be a domain with quotient field *K* and *A* a *D*-algebra. A polynomial with coefficients in *K* that maps every element of *A* to an element of *A* is called integer-valued on *A*. For commutative *A* we also consider integer-valued polynomials in several variables. For an arbitrary domain *D* and *I* an arbitrary ideal of *D* we show *I*-adic continuity of integer-valued polynomials on *A*. For Noetherian one-dimensional *D*, we determine spectrum and Krull dimension of the ring Int_{*D*}(*A*) of integer-valued polynomials on *A*. We do the same for the ring of polynomials with coefficients in $M_n(K)$, the *K*-algebra of $n \times n$ matrices, that map every matrix in $M_n(D)$ to a matrix in $M_n(D)$.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.

1. Introduction

Let D be a domain with quotient field K and A a D-algebra, such as, for instance, a group ring D(G) or the matrix algebra $M_n(D)$.

We are interested in the rings of polynomials

$$\operatorname{Int}_{D}(A) = \left\{ f \in K[x] \mid f(A) \subseteq A \right\},\$$

and, if *A* is commutative,

E-mail address: frisch@TUGraz.at.

 $^{0021-8693 @ 2012 \} Elsevier \ Inc. \ Open \ access \ under \ CC \ BY-NC-ND \ license. \\ http://dx.doi.org/10.1016/j.jalgebra.2012.10.003$

$$\operatorname{Int}_D^n(A) = \left\{ f \in K[x_1, \dots, x_n] \mid f(A^n) \subseteq A \right\}.$$

Elements of the *D*-algebra *A* are plugged into polynomials with coefficients in *K* via the canonical homomorphism $\iota_A : A \to K \otimes_D A$, $\iota_A(a) = 1 \otimes a$.

In the special case A = D these rings are known as rings of integer-valued polynomials, cf. [3]. They provide natural examples of non-Noetherian Prüfer rings [5,11], and have been used for proving results on the *n*-generator property in Prüfer rings [2]. Also, integer-valued polynomials are useful for polynomial interpolation of functions from *D* to *D* [8,4], and satisfy other interesting algebraic conditions such as analogues of Hilbert's Nullstellensatz [3,9].

These desirable properties of rings of integer-valued polynomials have motivated the generalization to polynomials with coefficients in *K* acting on a *D*-algebra *A* [10,12]. So far, not much is known about rings of integer-valued polynomials on algebras. We know that they behave somewhat like the classical rings of integer-valued polynomials if the *D*-algebra *A* is commutative. For instance, Loper and Werner [12] have shown that $Int_{\mathbb{Z}}(\mathcal{O}_K)$ is Prüfer. If *A* is non-commutative, however, the situation is radically different. For instance, $Int_{\mathbb{Z}}(M_2(\mathbb{Z}))$ is not Prüfer [12], and is far from allowing interpolation [10].

We will describe the spectrum of $Int_D(A)$, for a one-dimensional Noetherian ring D and a finitely generated torsion-free D-algebra A, in the hope that this will facilitate further research. We will investigate more closely the special case of $A = M_n(D)$: we determine a polynomially dense subset of $M_n(D)$ and describe the image of a given matrix under the ring $Int_D(M_n(D))$.

A different ring of integer-valued polynomials on the matrix algebra $M_n(D)$, consisting of polynomials with coefficients in $M_n(K)$ that map matrices in $M_n(D)$ to matrices in $M_n(D)$, has been introduced by Werner [13]. We will show that it is isomorphic to the algebra of $n \times n$ matrices over "our" ring $Int_D(M_n(D))$ of integer-valued polynomials on $M_n(D)$ with coefficients in K.

Before we give a precise definition of the kind of *D*-algebra *A* for which we will investigate $Int_D(A)$, a few examples. *D* is always a domain with quotient field *K*, and not a field.

1.1. Example. For fixed $n \in \mathbb{N}$, let $A = M_n(D)$ be the *D*-algebra of $n \times n$ matrices with entries in *D* and

$$\operatorname{Int}_D(\mathsf{M}_n(D)) = \{ f \in K[x] \mid \forall C \in \mathsf{M}_n(D) \colon f(C) \in \mathsf{M}_n(D) \}.$$

1.2. Example. Let $H = \mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}k$ be the \mathbb{Q} -algebra of rational quaternions, $L = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$ the \mathbb{Z} -subalgebra of Lipschitz quaternions, and

$$\operatorname{Int}_{\mathbb{Z}}(\mathsf{L}) = \left\{ f \in \mathbb{Q}[x] \mid \forall z \in \mathsf{L}: f(z) \in \mathsf{L} \right\}.$$

1.3. Example. Let G be a finite group, K(G) and D(G) the respective group rings, and

$$\operatorname{Int}_{D}(D(G)) = \{ f \in K[x] \mid \forall z \in D(G) \colon f(z) \in D(G) \}.$$

If G is commutative, we also consider

$$\operatorname{Int}_{D}^{n}(D(G)) = \left\{ f \in K[x_{1}, \dots, x_{n}] \mid \forall z \in D(G)^{n} \colon f(z) \in D(G) \right\},$$

for $n \in \mathbb{N}$, where $D(G)^n = D(G) \times \cdots \times D(G)$ denotes the Cartesian product of *n* copies of D(G).

1.4. Example. Let $D \subseteq A$ be Dedekind rings with quotient fields $K \subseteq F$, and

$$\operatorname{Int}_{D}^{n}(A) = \left\{ f \in K[x_{1}, \ldots, x_{n}] \mid f(A^{n}) \subseteq A \right\}.$$

Download English Version:

https://daneshyari.com/en/article/6414930

Download Persian Version:

https://daneshyari.com/article/6414930

Daneshyari.com