Integer-valued polynomials on algebras

Sophie Frisch

Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O

Article history:

Received 27 July 2011
Available online 31 October 2012
Communicated by Luchezar L. Avramov

MSC:

primary 13 F 20
secondary 16S50, 13B25, 13J10, 11C08, 11C20

Keywords:
Integer-valued polynomials
Spectrum
Krull dimension
Matrix algebras
Polynomial rings
I-adic topology
Non-commutative algebras
Non-commuting variables
Polynomial functions
Polynomial mappings

Abstract

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I-adic continuity of integer-valued polynomials on A. For Noetherian one-dimensional D, we determine spectrum and Krull dimension of the ring $\operatorname{Int}_{D}(A)$ of integer-valued polynomials on A. We do the same for the ring of polynomials with coefficients in $M_{n}(K)$, the K-algebra of $n \times n$ matrices, that map every matrix in $M_{n}(D)$ to a matrix in $M_{n}(D)$.

(C) 2012 Elsevier Inc. Open access under CC BY-NC-ND license.

1. Introduction

Let D be a domain with quotient field K and A a D-algebra, such as, for instance, a group ring $D(G)$ or the matrix algebra $M_{n}(D)$.

We are interested in the rings of polynomials

$$
\operatorname{Int}_{D}(A)=\{f \in K[x] \mid f(A) \subseteq A\},
$$

and, if A is commutative,

[^0]0021-8693 © 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
http://dx.doi.org/10.1016/j.jalgebra.2012.10.003

$$
\operatorname{Int}_{D}^{n}(A)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid f\left(A^{n}\right) \subseteq A\right\}
$$

Elements of the D-algebra A are plugged into polynomials with coefficients in K via the canonical homomorphism $\iota_{A}: A \rightarrow K \otimes_{D} A, \iota_{A}(a)=1 \otimes a$.

In the special case $A=D$ these rings are known as rings of integer-valued polynomials, cf. [3]. They provide natural examples of non-Noetherian Prüfer rings [5,11], and have been used for proving results on the n-generator property in Prüfer rings [2]. Also, integer-valued polynomials are useful for polynomial interpolation of functions from D to $D[8,4]$, and satisfy other interesting algebraic conditions such as analogues of Hilbert's Nullstellensatz [3,9].

These desirable properties of rings of integer-valued polynomials have motivated the generalization to polynomials with coefficients in K acting on a D-algebra $A[10,12]$. So far, not much is known about rings of integer-valued polynomials on algebras. We know that they behave somewhat like the classical rings of integer-valued polynomials if the D-algebra A is commutative. For instance, Loper and Werner [12] have shown that $\operatorname{Int}_{\mathbb{Z}}\left(\mathcal{O}_{K}\right)$ is Prüfer. If A is non-commutative, however, the situation is radically different. For instance, $\operatorname{Int}_{\mathbb{Z}}\left(M_{2}(\mathbb{Z})\right)$ is not Prüfer [12], and is far from allowing interpolation [10].

We will describe the spectrum of $\operatorname{Int}_{D}(A)$, for a one-dimensional Noetherian ring D and a finitely generated torsion-free D-algebra A, in the hope that this will facilitate further research. We will investigate more closely the special case of $A=\mathrm{M}_{n}(D)$: we determine a polynomially dense subset of $\mathrm{M}_{n}(D)$ and describe the image of a given matrix under the ring $\operatorname{Int}_{D}\left(\mathrm{M}_{n}(D)\right)$.

A different ring of integer-valued polynomials on the matrix algebra $M_{n}(D)$, consisting of polynomials with coefficients in $M_{n}(K)$ that map matrices in $M_{n}(D)$ to matrices in $M_{n}(D)$, has been introduced by Werner [13]. We will show that it is isomorphic to the algebra of $n \times n$ matrices over "our" ring $\operatorname{Int}_{D}\left(\mathrm{M}_{n}(D)\right)$ of integer-valued polynomials on $M_{n}(D)$ with coefficients in K.

Before we give a precise definition of the kind of D-algebra A for which we will investigate $\operatorname{Int}_{D}(A)$, a few examples. D is always a domain with quotient field K, and not a field.
1.1. Example. For fixed $n \in \mathbb{N}$, let $A=M_{n}(D)$ be the D-algebra of $n \times n$ matrices with entries in D and

$$
\operatorname{Int}_{D}\left(\mathrm{M}_{n}(D)\right)=\left\{f \in K[x] \mid \forall C \in \mathrm{M}_{n}(D): f(C) \in \mathrm{M}_{n}(D)\right\}
$$

1.2. Example. Let $H=\mathbb{Q}+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} k$ be the \mathbb{Q}-algebra of rational quaternions, $L=\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k$ the \mathbb{Z}-subalgebra of Lipschitz quaternions, and

$$
\operatorname{Int}_{\mathbb{Z}}(\mathrm{L})=\{f \in \mathbb{Q}[x] \mid \forall z \in \mathrm{~L}: f(z) \in \mathrm{L}\}
$$

1.3. Example. Let G be a finite group, $K(G)$ and $D(G)$ the respective group rings, and

$$
\operatorname{Int}_{D}(D(G))=\{f \in K[x] \mid \forall z \in D(G): f(z) \in D(G)\}
$$

If G is commutative, we also consider

$$
\operatorname{Int}_{D}^{n}(D(G))=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid \forall z \in D(G)^{n}: f(z) \in D(G)\right\}
$$

for $n \in \mathbb{N}$, where $D(G)^{n}=D(G) \times \cdots \times D(G)$ denotes the Cartesian product of n copies of $D(G)$.
1.4. Example. Let $D \subseteq A$ be Dedekind rings with quotient fields $K \subseteq F$, and

$$
\operatorname{Int}_{D}^{n}(A)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid f\left(A^{n}\right) \subseteq A\right\}
$$

https://daneshyari.com/en/article/6414930

Download Persian Version:
https://daneshyari.com/article/6414930

Daneshyari.com

[^0]: E-mail address: frisch@TUGraz.at.

