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Let X be a finite set such that |X| = n. Let Tn and Sn denote
the transformation monoid and the symmetric group on n points,
respectively. Given a ∈ Tn \ Sn , we say that a group G � Sn is
a-normalizing if

〈a, G〉 \ G = 〈
g−1ag

∣∣ g ∈ G
〉
,

where 〈a, G〉 and 〈g−1ag | g ∈ G〉 denote the subsemigroups of Tn

generated by the sets {a} ∪ G and {g−1ag | g ∈ G}, respectively.
If G is a-normalizing for all a ∈ Tn \ Sn , then we say that G is
normalizing.
The goal of this paper is to classify the normalizing groups and
hence answer a question of Levi, McAlister, and McFadden. The
paper ends with a number of problems for experts in groups,
semigroups and matrix theory.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

For notation and basic results on group theory we refer the reader to [8,11]; for semigroup theory
we refer the reader to [17]. Let Tn and Sn denote the monoid consisting of mappings from [n] :=
{1, . . . ,n} to [n] and the symmetric group on [n] points, respectively. The monoid Tn is usually called
the full transformation semigroup. In [21], Levi and McFadden proved the following result.
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Theorem 1.1. Let a ∈ Tn \ Sn. Then

(1) 〈g−1ag | g ∈ Sn〉 is idempotent generated;
(2) 〈g−1ag | g ∈ Sn〉 is regular.

Using a beautiful argument, McAlister [26] proved that the semigroups 〈g−1ag | g ∈ Sn〉 and
〈a,Sn〉 \ Sn (for a ∈ Tn \ Sn) have exactly the same set of idempotents; therefore, as 〈g−1ag | g ∈ Sn〉
is idempotent generated, it follows that

〈
g−1ag

∣∣ g ∈ Sn
〉 = 〈a,Sn〉 \ Sn.

Later, Levi [22] proved that 〈g−1ag | g ∈ Sn〉 = 〈g−1ag | g ∈ An〉 (for a ∈ Tn \ Sn), and hence the
three results above remain true when we replace Sn by An . The following list of problems naturally
arises from these considerations.

(1) Classify the groups G � Sn such that for all a ∈ Tn \Sn we have that the semigroup 〈g−1ag | g ∈ G〉
is idempotent generated.

(2) Classify the groups G � Sn such that for all a ∈ Tn \Sn we have that the semigroup 〈g−1ag | g ∈ G〉
is regular.

(3) Classify the groups G � Sn such that for all a ∈ Tn \ Sn we have

〈a, G〉 \ G = 〈
g−1ag

∣∣ g ∈ G
〉
.

The two first questions were solved in [4] as follows:

Theorem 1.2. If n � 1 and G is a subgroup of Sn, then the following are equivalent:

(i) The semigroup 〈g−1ag | g ∈ G〉 is idempotent generated for all a ∈ Tn \ Sn.
(ii) One of the following is valid for G and n:

(a) n = 5 and G is AGL(1,5);
(b) n = 6 and G is PSL(2,5) or PGL(2,5);
(c) G is An or Sn.

Theorem 1.3. If n � 1 and G is a subgroup of Sn, then the following are equivalent:

(i) The semigroup 〈g−1ag | g ∈ G〉 is regular for all a ∈ Tn \ Sn.
(ii) One of the following is valid for G and n:

(a) n = 5 and G is C5 , D5 , or AGL(1,5);
(b) n = 6 and G is PSL(2,5) or PGL(2,5);
(c) n = 7 and G is AGL(1,7);
(d) n = 8 and G is PGL(2,7);
(e) n = 9 and G is PSL(2,8) or P�L(2,8);
(f) G is An or Sn.

These results leave us with the third problem. Given a ∈ Tn \ Sn , we say that a group G � Sn is
a-normalizing if

〈a, G〉 \ G = 〈
g−1ag

∣∣ g ∈ G
〉
.

If G is a-normalizing for all a ∈ Tn \ Sn , then we say that G is normalizing. Recall that the rank
of a transformation f is just the number of points in its image; we denote this by rank( f ). For
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