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Let Kϑ be a model space generated by an inner function ϑ. We 
study the Schatten class membership of composition operators 
Cϕ : Kϑ → H2(D) with a holomorphic function ϕ : D → D, 
and, more generally, of embeddings Iμ : Kθ → L2(μ) with a 
positive measure μ in D̄. In the case of one-component inner 
functions ϑ we show that the problem can be reduced to 
the study of natural extensions of I and Cϕ to the Hardy–
Smirnov space E2(D) in some domain D ⊃ D. In particular, 
we obtain a characterization of Schatten membership of Cϕ

in terms of Nevanlinna counting function. By example this 
characterization does not hold true for general ϑ.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let D = {z : |z| < 1} be the unit disk and T = {z : |z| = 1} be the unit circle. 
A bounded analytic function ϑ in D is said to be inner if its non-tangential boundary 
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values satisfy |ϑ| = 1 almost everywhere on T. We denote by H2(D) the Hardy space 
on D and by Kϑ = H2(D) � ϑH2(D) the corresponding model space.

In this article two classes of operators are considered: embeddings Iμ : Kϑ → L2(μ), 
where μ is a finite positive measure supported on D, and composition operators Cϕ : f �→
f ◦ϕ acting from Kϑ into H2(D), where ϕ : D → D is a holomorphic function. In fact, it 
is well-known that the latter type of operator may be considered as a special case of the 
former for a certain pullback measure μϕ. We mention that embeddings of model spaces 
have been studied by a number of authors [1,2,4–7,29]; composition operators on Hardy 
(and more general) spaces is by now a classical subject – we refer the reader to [8,27]
and to [25] for a description of the current state of the art and a history survey. In this 
article we study the composition operator acting from the model space Kϑ into H2(D)
thus emphasizing interaction between the boundary behavior of ϕ and the spectrum of 
the inner function ϑ. In such setting the problem has been considered in [21]. Our main 
goal is to understand when such embedding and composition operators belong to the 
Schatten trace ideal Sp, 0 < p < ∞.

The embedding operators on Kϑ have proved easier to analyze when ϑ is a one-
component inner function, see [1,2,4,5,29]. In particular, the Schatten ideal membership 
of Iμ has been characterized by Baranov [4] for one-component ϑ. In Section 3 we sug-
gest a different approach to the problem. We return to the original ideas of Cohn [6] and 
extend embedding operators on Kϑ to operators acting on the Hardy–Smirnov space 
E2(D) of a certain domain D ⊃ D. This allows us to obtain a geometrical criterion for 
the inclusion of Iμ in Sp. In particular we recover the aforementioned result in [4].

For composition operators Cϕ we further refine our result to give trace ideal criteria 
in terms of the Nevanlinna counting function Nϕ,

Nϕ(z) =
∑

ϕ(ζ)=z

log 1
|ζ| .

We combine the geometric approach with recent results [17,18] that clarify the connection 
between the Nevanlinna counting function Nϕ and the measure μϕ (see also [11]), in order 
to obtain the following characterization.

Theorem 4.2. Let ϑ be a one-component inner function. The operator Cϕ : Kϑ → H2 is 
in Sp, 0 < p < ∞, if and only if

∫
D

(
Nϕ(z)(1 − |ϑ(z)|)2

1 − |z|2
)p/2 (1 − |ϑ(z)|2

1 − |z|2
)2

dA < ∞.

The article is organized as follows. The next section contains preliminary information 
about one-component inner functions and the corresponding model spaces. In Section 3
we reduce the trace ideal problem of embedding operators on Kϑ to a corresponding 
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