

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Small analytic solutions to the Hartree equation

Hironobu Sasaki¹

Department of Mathematics and Informatics, Chiba University, 263-8522, Japan

A R T I C L E I N F O

Article history: Received 30 December 2014 Accepted 2 November 2015 Available online 19 November 2015 Communicated by B. Schlein

MSC: 35Q55 35B65 35G25

Keywords: Nonlinear Schrödinger equation Analytic solution Hartree term

ABSTRACT

We consider the Cauchy problem for the Hartree equation in space dimension $d \geq 3$. We assume that the interaction potential V belongs to the weak $L^{d/2}$ space. We prove that if the initial data ϕ is sufficiently small in the L^2 -sense and either ϕ or its Fourier transform $\mathcal{F}\phi$ satisfies a real-analytic condition, then the solution u(t) is also real-analytic for any $t \neq 0$. We also prove that if ϕ and V satisfy some strong condition, then u(t) can be extended to an entire function on \mathbb{C}^d for any $t \neq 0$. A part of our method is applicable to the final value problem. We remark that no L^2 smallness condition is imposed on first and higher order partial derivatives of ϕ and $\mathcal{F}\phi$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Cauchy problem for the nonlinear Schrödinger equation of the form

$$\begin{cases} iu_t + \Delta u = F(u), \\ u(0, x) = \phi(x). \end{cases}$$
(1.1)

E-mail address: sasaki@math.s.chiba-u.ac.jp.

癯

¹ Supported by Grant-in-Aid for Young Scientists (B) No. 25800074.

Here, u is a complex-valued unknown function of $(t, x) \in \mathbb{R} \times \mathbb{R}^d$, $d \ge 3$, $i = \sqrt{-1}$, Δ is the Laplacian in \mathbb{R}^d , F(u) denotes the Hartree term $(V * |u|^2)u$ and * is the convolution in \mathbb{R}^d . Throughout this paper, we assume that the interaction potential V is a given function on \mathbb{R}^d and belongs to the weak $L^{d/2}$ space. In other words, we assume that

$$\sup_{\lambda>0} \lambda \,\mu\Big(\left\{x \in \mathbb{R}^d; |V(x)| > \lambda\right\}\Big)^{2/d} < \infty,\tag{1.2}$$

where μ is the Lebesgue measure on \mathbb{R}^d . There is a large literature on the Cauchy problem for nonlinear Schrödinger equations (see, e.g., [2,13,25] and references therein).

To state a global existence theorem for (1.1), we set some notation. For $q \in [1, \infty]$, we denote the Lebesgue space $L^q(\mathbb{R}^d)$ and the L^q -norm by L^q and $\|\cdot\|_q$, respectively, and we set $\|\cdot\| = \|\cdot\|_2$. For $t \in \mathbb{R}$, U(t) denotes the propagator $e^{it\Delta}$ for the free Schrödinger equation $iu_t + \Delta u = 0$. Mochizuki [14] has proved that if the condition

either
$$|V(x)| \le C|x|^{-2}$$
 or $V \in L^{d/2}$,

which is stronger than (1.2), holds and $\|\phi\|$ is sufficiently small, then there exists a time-global solution u to the integral equation of the form

$$u(t) = U(t)\phi - i \int_{0}^{t} U(t - t')F(u(t'))dt', \quad t \in \mathbb{R},$$
(1.3)

which is equivalent to (1.1), such that u(t) behaves like a free solution $U(t)\phi_+$ as $t \to \infty$ in L^2 . In particular, the inverse wave operator $\mathbf{V}_+ : \phi \mapsto \phi_+$ is well-defined on a neighborhood of 0 in L^2 (see also [16]). Remark that in the above existence theorem, no L^2 smallness condition is imposed on first and higher order partial derivatives of ϕ and its Fourier transform $\mathcal{F}\phi$.

1.1. Main results

In this paper, assuming that either ϕ or $\mathcal{F}\phi$ satisfies a real-analytic condition, we study the analyticity of the small solution u(t) to (1.3), the final data $\mathbf{V}_+(\phi)$ and $\mathcal{F}\mathbf{V}_+(\phi)$. Remark that we do not impose any L^2 smallness condition on any partial derivative of ϕ and $\mathcal{F}\phi$. We now briefly state a part of our main result. We show that:

(I) There exists some $\eta > 0$ such that if $0 < \|\phi\| < \eta$ and

$$\limsup_{|\alpha| \to \infty} \left(\frac{\|x^{\alpha} \phi\|}{\alpha!} \right)^{1/|\alpha|} < \infty, \tag{1.4}$$

Download English Version:

https://daneshyari.com/en/article/6415021

Download Persian Version:

https://daneshyari.com/article/6415021

Daneshyari.com