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In this work we present a Lyapunov inequality for linear 
and quasilinear elliptic differential operators in N -dimensional 
domains Ω. We also consider singular and degenerate elliptic 
problems with Ap coefficients involving the p-Laplace operator 
with zero Dirichlet boundary condition.
As an application of the inequalities obtained, we derive 
lower bounds for the first eigenvalue of the p-Laplacian, and 
compare them with the usual ones in the literature.
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1. Introduction

In his classical work [23], Lyapunov proved that, given a continuous periodic and 
positive function w with period L, the solution u of the ordinary differential equation 
u′′ + w(t)u = 0, in (−∞, +∞), was stable if
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L

L∫
0

w(t)dt < 4.

Then, Borg in [4] introduced the Lyapunov inequality in his proof of the stability 
criteria for sign changing weights w. He showed that the inequality

4
L

≤
L∫

0

|w(t)|dt (1.1)

must be satisfied in order to have a nontrivial solution in [0, L] ⊂ R of the problem

{
u′′ + w(t)u = 0,
u(0) = 0 = u(L).

(1.2)

Since then, it was rediscovered and generalized many times. Inequality (1.1) was 
applied in stability problems, oscillation theory, a priori estimates, other inequalities, and 
eigenvalue bounds for ordinary differential equations. Different proofs of this inequality 
have appeared in the literature: the proof of Patula [28] by direct integration, or the one 
of Nehari [24] showing the relationship with Green’s functions, among several others. See 
the survey [5] for other proofs.

In the nonlinear setting, the following inequality

2p

Lp−1 ≤
L∫

0

w(t)dt (1.3)

generalized Lyapunov inequality (1.1) to p-Laplacian problems,

{
(|u′|p−2u′)′ + w(t)|u|p−2u = 0,
u(0) = 0 = u(L).

Here, w ∈ L1 and 1 < p < ∞, for p = 2 we recover the linear problem (1.2). Several 
proofs were given in the last years, see [21,27,29,33]; although it seems to be derived first 
by Elbert [14].

Later, we extended it in [10] to nonlinear operators in Orlicz spaces generalizing the 
p-Laplacian,

−(ϕ(u′))′ = λr(t)ϕ(u), (1.4)

where ϕ(s) is a convex nondecreasing function, such that sϕ(s) satisfies the Δ2 condi-
tion. Moreover, we also extend it to systems of resonant type (see [3]) involving p- and 
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