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14P25 the Laplace—Beltrami operator associated to eigenvalues less
32A25 than A and consider the random submanifold defined as
34L20 the common zero set of these r functions. We compute
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hand, we consider a complex projective manifold defined over
the reals, equipped with an ample line bundle £ and a rank
r holomorphic vector bundle £ that are also defined over the
reals. Then we get asymptotics for the expected volume and
Euler characteristic of the real vanishing locus of a random
real holomorphic section of £ ® L% as d goes to infinity. The
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1. Introduction

Zeros of random polynomials were first studied by Bloch and Polya [6] in the early 30s.
About ten years later, Kac [22] obtained a sharp asymptotic for the expected number of
real zeros of a polynomial of degree d with independent standard Gaussian coefficients, as
d goes to infinity. This was later generalized to other distributions by Kostlan in [23]. In
particular, he introduced a normal distribution on the space of homogeneous polynomials
of degree d — known as the Kostlan distribution — which is more geometric, in the
sense that it is invariant under isometries of CP'. Bogomolny, Bohigas and Leboeuf [7]
showed that this distribution corresponds to the choice of d independent roots, uniformly
distributed in the Riemann sphere.

In higher dimension, the question of the number of zeros can be generalized in at
least two ways. What is the expected volume of the zero set? And what is its expected
Euler characteristic? More generally, one can ask what are the expected volume and
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