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In this paper we investigate continuity properties of first 
and second order shape derivatives of functionals depending 
on second order elliptic PDEs around nonsmooth domains, 
essentially either Lipschitz or convex, or satisfying a uniform 
exterior ball condition. We prove rather sharp continuity 
results for these shape derivatives with respect to Sobolev 
norms of the boundary-traces of the displacements. With 
respect to previous results of this kind, the approach is quite 
different and is valid in any dimension N ≥ 2. It is based 
on sharp regularity results for Poisson-type equations in such 
nonsmooth domains. We also enlarge the class of functionals 
and PDEs for which these estimates apply. Applications are 
given to qualitative properties of shape optimization problems 
under convexity constraints for the variable domains or their 
complement.
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1. Introduction

In this paper, we focus on regularity estimates for first and second order shape deriva-
tives around nonsmooth subsets of RN (N ≥ 2) for energy functionals involving classical 
elliptic partial differential equations (PDEs). For instance, we address the following ques-
tion: given a bounded Lipschitz or convex subset Ω0 ⊂ R

N , we wonder what is the optimal 
regularity of the shape derivatives

ξ → E′(Ω0)(ξ), ξ → E′′(Ω0)(ξ, ξ),

where E′(Ω0), E′′(Ω0) respectively denote the first and second shape derivatives around 
Ω0 of the shape functional Ω �→ E(Ω) =

∫
Ω K(x, UΩ, ∇UΩ)dx, K(x, ·, ·) a quadratic 

polynomial and UΩ = UΩ(x) the solution of an elliptic PDE set in Ω (see Sections 2.1, 
2.2 for the precise definitions).

This question, interesting in itself, is in particular motivated by the qualitative analysis 
of shape optimization problems of the form

min{J(Ω), Ω ⊂ R
N convex, Ω ∈ Oad}, (1)

where Oad is a set of admissible subsets of RN and J : Oad → R is a shape functional 
which itself involves shape functionals Ω �→ E(Ω) of the above type.

The following 2-dimensional example was considered in [16] among other cases:

J(Ω) = R(E(Ω), |Ω|) − P (Ω),

Oad =
{
Ω ⊂ R

2, open and ∂Ω ⊂ {x, a ≤ |x| ≤ b}
}
, (2)

where R : R2 → R is a smooth function, E(Ω) is a shape functional related to a PDE, 
|Ω| is the Lebesgue measure of Ω, P (Ω) its perimeter and (a, b) ∈ [0, ∞]2. It was proved 
(see [16, Theorem 2.9, Theorem 2.12 and Corollary 2.13] and also Section 4 in the 
present paper) that if the second order shape derivative ξ �→ E′′(Ω0)(ξ, ξ) around any 
bounded convex subset Ω0 is continuous with respect to a norm strictly weaker than 
H1(∂Ω0), then optimal shapes of (1) are polygonal in {x, a < |x| < b}. In [16], the authors 
prove that such a continuity holds in the two specific examples: when the functional 
E(Ω) is the Dirichlet energy of Ω – that is K = K(x, U, q) = ‖q‖2 − 2f(x) and UΩ is 
solution of the associated Dirichlet problem, or when E(Ω) is the first eigenvalue of the 
Dirichlet–Laplacian on Ω. More precisely, it is proved in [16] that the second order shape 
derivative of E(·) is, in these two examples and around any open convex domain Ω0, 
continuous for the H1/2(∂Ω0) ∩ L∞(∂Ω0) topology (and therefore continuous for the 
H1/2+ε(∂Ω0)-topology for any ε > 0). The proof of this continuity strongly relies on 
the 2-dimensional environment. As explained below, we prove in this paper that even 
the full H1/2(∂Ω0)-continuity holds in this case and even in any dimension (see iii) in 
Corollary 2.6). Note that this continuity is optimal since, for regular convex domains Ω0, 
if for instance f = 0 on ∂Ω0, then E′′(Ω0) satisfies
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