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Suppose that f is a Lipschitz function on R with ‖f‖Lip ≤ 1. 
Let A be a bounded self-adjoint operator on a Hilbert space H. 
Let p ∈ (1, ∞) and suppose that x ∈ B(H) is an operator 
such that the commutator [A, x] is contained in the Schatten 
class Sp. It is proved by the last two authors, that then also 
[f(A), x] ∈ Sp and there exists a constant Cp independent of 
x and f such that

∥∥[f(A), x
]∥∥

p
≤ Cp

∥∥[A, x]
∥∥
p
.

The main result of this paper is to give a sharp estimate 
for Cp in terms of p. Namely, we show that Cp ∼ p2

p−1 . In 
particular, this gives the best estimates for operator Lipschitz 
inequalities.
We treat this result in a more general setting. This involves 
commutators of n self-adjoint operators A1, . . . , An, for which 
we prove the analogous result. The case described here in the 
abstract follows as a special case.
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1. Introduction

Recently, the last two authors proved that Lipschitz functions on R act as operator 
Lipschitz functions on the Schatten classes Sp for all p ∈ (1, ∞), see [17,20]. That is, 
suppose that f : R → R is a Lipschitz function and

‖f‖Lip = sup
ξ,ξ̃∈R

|f(ξ) − f(ξ̃)|
‖ξ − ξ̃‖1

≤ 1.

Let p ∈ (1, ∞). Suppose that A, B are bounded, self-adjoint operators such that A −
B ∈ Sp. Then, it was proved in [17] that also f(A) − f(B) ∈ Sp and there is a constant 
Cp < ∞ independent of A, B and f such that

∥∥f(A) − f(B)
∥∥
p
≤ Cp‖A−B‖p. (1.1)

We denote Cp for the minimal constant for which the inequality (1.1) holds.
For the case p = 1, the analogous result fails. That is, there is no constant C1 such 

that the inequality (1.1) holds as was proved in [5]. For the case p = ∞ the analogous 
statement also fails as was proved in [12].

This raises the question of what the growth order of Cp is as p approaches either 1
or ∞. In [13] it was proved that Cp � p8 as p → ∞ and Cp � (p − 1)−8 as p ↓ 1. In fact, 
in [13] a more general result is covered involving an n-tuple of commuting self-adjoint 
(bounded) operators. We refer to [13, Theorem 5.3] for the precise statement.

In [17] an estimate for the asymptotic behaviour of Cp was not mentioned explicitly. 
However, it is in principle possible to find an upper estimate for Cp from the proof 
presented in [17]. These proofs involve the Marcinkiewicz multiplier theorem as well as 
diagonal truncation and do not lead to a sharp upper estimate of Cp.

The main result of this paper is a sharp estimate for Cp. Namely, we prove that Cp ∼ p

as p → ∞ and we prove that Cp ∼ (p − 1)−1 as p ↓ 1. Our result is stated in terms of 
commutator estimates in Schatten classes. In particular, it sharpens the estimates found 
in [13] for n-tuples of commuting self-adjoint operators.

The novelty of our proof is that we apply the main result of [6]. In [6] sharp esti-
mates were found for the action of a smooth, even multiplier that acts on vector-valued
Lp-spaces. The norm of such a multiplier can be expressed in terms of the UMD-constant 
of a Banach space (we recall the definition below). This result together with the so-called 
transference method forms the key argument that allows us to improve the known esti-
mates for Cp.

This paper relates to the general interest of finding the best constants in non-
commutative probability inequalities. In particular, major achievements have been made 
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