Boundedness of a class of bi-parameter square functions in the upper half-space

Henri Martikainen ${ }^{1}$
Département de Mathématiques, Bâtiment 425, Faculté des Sciences d'Orsay, Université Paris-Sud 11, F-91405, Orsay Cedex, France

A R T I C L E I N F O

Article history:

Received 11 May 2013
Accepted 6 September 2014
Available online 22 September 2014
Communicated by J. Bourgain

MSC:

42B20

Keywords:

Square function
Bi-parameter
T1 theorem

Abstract

We consider a class of bi-parameter kernels and related square functions in the upper half-space, and give an efficient proof of a boundedness criterion for them. The proof uses modern probabilistic averaging methods and is based on controlling double Whitney averages over good cubes.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we introduce a class of bi-parameter kernels $\left(t_{1}, t_{2}, x_{1}, x_{2}, y_{1}, y_{2}\right) \mapsto$ $s_{t_{1}, t_{2}}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, where $t_{1}, t_{2}>0$ and $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{n+m}$. We then consider bi-parameter square functions

[^0]$$
S f\left(y_{1}, y_{2}\right)=\left(\iint_{\Gamma\left(y_{2}\right)} \iint_{\Gamma\left(y_{1}\right)}\left|\theta_{t_{1}, t_{2}} f\left(x_{1}, x_{2}\right)\right|^{2} \frac{d x_{1} d t_{1}}{t_{1}^{n+1}} \frac{d x_{2} d t_{2}}{t_{2}^{m+1}}\right)^{1 / 2}
$$
where $\Gamma\left(y_{1}\right)=\left\{\left(x_{1}, t_{1}\right) \in \mathbb{R}_{+}^{n+1}:\left|x_{1}-y_{1}\right|<t_{1}\right\}$ and
$$
\theta_{t_{1}, t_{2}} f\left(x_{1}, x_{2}\right)=\iint_{\mathbb{R}^{n+m}} s_{t_{1}, t_{2}}\left(x_{1}, x_{2}, z_{1}, z_{2}\right) f\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

The kernels $s_{t_{1}, t_{2}}$ are assumed to satisfy a natural size estimate, a Hölder estimate and two symmetric mixed Hölder and size estimates. We also assume certain mixed Carleson and size estimates, mixed Carleson and Hölder estimates and a bi-parameter Carleson condition. Under these assumptions we show the square function bound

$$
\|S f\|_{L^{2}\left(\mathbb{R}^{n+m}\right)}^{2}=C_{n} C_{m} \iint_{\mathbb{R}_{+}^{m+1}} \iint_{\mathbb{R}_{+}^{n+1}}\left|\theta_{t_{1}, t_{2}} f\left(x_{1}, x_{2}\right)\right|^{2} \frac{d x_{1} d t_{1}}{t_{1}} \frac{d x_{2} d t_{2}}{t_{2}} \lesssim\|f\|_{L^{2}\left(\mathbb{R}^{n+m}\right)}^{2}
$$

Compared to the bi-parameter Calderón-Zygmund theory the square function case is significantly cleaner. Indeed, the amount of needed symmetries and conditions are greatly reduced. Moreover, one encounters only one full paraproduct - not four. In particular, some demanding aspects related to mixed full paraproducts arising from partial adjoints of Calderón-Zygmund operators are not present here.

Recently, the author together with M. Mourgoglou [7] proved a boundedness criterion for one-parameter square functions with general measures. The key to the short proof was based on a new averaging identity over good Whitney regions. The identity is a further development of Hytönen's improvement [3] of the Nazarov-Treil-Volberg method of random dyadic systems [8]. In this paper we push this efficient proof strategy to the much more demanding case of two parameters. Our boundedness proof is surprisingly short compared to most of the related bi-parameter theory.

Probabilistic methods in the bi-parameter Calderón-Zygmund setting were first used by the author in [6]. They saw another application in a joint work with Hytönen [4]. Most recently these methods were used by Y. Ou [9] to prove a Tb extension of [6]. However, the square function case treated in this paper is based on a simple new averaging identity over good double Whitney regions. Even in the probabilistic realm the square function case is cleaner than the corresponding Calderón-Zygmund case.

The first $T 1$ type theorem for product spaces was proved by Journé [5]. Journé formulated his theorem in the language of vector-valued Calderón-Zygmund theory. S. Pott and P. Villarroya [10] recently offered a new view - an alternative framework avoiding the vector-valued assumptions. This ideology of mixing the various conditions (kernel estimates, BMO and weak boundedness property) was also used in [6] and [4]. The current paper is a continuation of this theme but in the square function setting. For the corresponding one-parameter square function theory see e.g. the papers by Christ-Journé [1], Hofmann [2] and Semmes [11].

https://daneshyari.com/en/article/6415077

Download Persian Version:
https://daneshyari.com/article/6415077

Daneshyari.com

[^0]: E-mail address: henri.martikainen@helsinki.fi.
 1 The author is supported by the Emil Aaltonen Foundation, and wishes to thank Université Paris-Sud 11, Orsay, for its hospitality.

