

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

On the impossibility of W_p^2 estimates for elliptic equations with piecewise constant coefficients

Hongjie Dong^{a,1}, Doyoon Kim^{b,*,2}

 ^a Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA
^b Department of Applied Mathematics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

nepublic of Korea

ARTICLE INFO

Article history: Received 22 April 2014 Accepted 17 September 2014 Available online 26 September 2014 Communicated by Daniel W. Stroock

MSC: 35J15 35R05 35B45

Keywords: Elliptic equations with piecewise constant coefficients W_p^2 estimates Counterexamples

ABSTRACT

In this paper, we present counterexamples showing that for any $p \in (1, \infty)$, $p \neq 2$, there is a non-divergence form uniformly elliptic operator with piecewise constant coefficients in \mathbb{R}^2 (constant on each quadrant in \mathbb{R}^2) for which there is no W_p^2 estimate. The corresponding examples in the divergence case are also discussed. One implication of these examples is that the ranges of p are sharp in the recent results obtained in [4,5] for non-divergence type elliptic and parabolic equations in a half space with the Dirichlet or Neumann boundary condition when the coefficients do not have any regularity in a tangential direction.

© 2014 Elsevier Inc. All rights reserved.

¹ H. Dong was partially supported by the NSF under agreement DMS-1056737.

http://dx.doi.org/10.1016/j.jfa.2014.09.013 0022-1236/© 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: Hongjie_Dong@brown.edu (H. Dong), doyoonkim@khu.ac.kr (D. Kim).

 $^{^2\,}$ D. Kim was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2011-0013960).

1. Introduction and main results

We consider elliptic operators in non-divergence form

$$\mathcal{L}u = a^{ij} D_{ij} u,$$

where

$$\delta |\xi|^2 \le a^{ij} \xi_i \xi_j, \quad |a^{ij}| \le \delta^{-1}, \ \delta \in (0,1].$$
 (1.1)

The L_p -theory of second-order elliptic and parabolic equations with discontinuous coefficients has been studied extensively in the last fifty years. In the special case when the dimension d = 2, it is well known that the W_2^2 estimate holds for uniformly elliptic operators with general bounded and measurable coefficients. See, for instance, [2,20]. On the other hand, a celebrated counterexample in [19] and [15] indicates that when $d \ge 3$ in general there is no W_2^2 estimate for elliptic operators with bounded measurable coefficients even if they are discontinuous only at a single point. Another example due to Ural'tseva [21] (see also [12]) shows the impossibility of the W_p^2 estimate when $d \ge 2$ and $p \ne 2$. We note that in Ural'tseva's example, the coefficients are continuous except at a single point (d = 2) or a line (d = 3). In [16], Nadirashvili showed that the weak uniqueness for martingale problems may fail if coefficients are merely measurable and $d \ge 3$. These examples imply that in general there does not exist a solvability theory for uniformly elliptic operators with bounded and measurable coefficients. Thus many efforts have been made to treat particular types of discontinuous coefficients.

In [3] Campanato extended the aforementioned result in [2,20] to the case when d = 2and p is in a neighborhood of 2, the size of which depends on the ellipticity constant δ . A corresponding result for parabolic equations can be found in [11]. By using explicit representation formulae, Lorenzi [13,14] studied the W_2^2 and W_p^2 , 1 , estimates $for elliptic equations in <math>\mathbb{R}^d$ with coefficients which are constant on each half space. See [18,8] for similar results for parabolic equations, and [9] for elliptic equations in \mathbb{R}^d with leading coefficients discontinuous at finitely many parallel hyperplanes. We also refer the reader to [10,6,12,4,5] and the references therein for some recent developments for equations with coefficients only measurable in some directions. In particular, it is proved in [4] that the W_p^2 estimate holds for elliptic equations in a half space with the zero Dirichlet (or Neumann) boundary condition when coefficients are only measurable in a tangential direction to the boundary and $p \in (1, 2]$ (or $p \in [2, \infty)$, respectively).

In this paper we focus our attention to elliptic equations with *piecewise constant* coefficients in \mathbb{R}^2 . In fact, the results in [14,10] imply the W_p^2 , $1 , estimate for such equations if coefficients are constants on the upper half plane and another constants on the lower half plane. On the other hand, as a special case of the results in [4], we have the <math>W_p^2$, $1 (or <math>2 \leq p < \infty$), estimate for equations defined in the upper half plane with the Dirichlet (or Neumann, respectively) boundary condition if coefficients

3964

Download English Version:

https://daneshyari.com/en/article/6415097

Download Persian Version:

https://daneshyari.com/article/6415097

Daneshyari.com