

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Homogenization of a generalized Stefan problem in the context of ergodic algebras

癯

Hermano Frid^{a,*}, Jean Silva^b, Henrique Versieux^b

 ^a Instituto de Matemática Pura e Aplicada – IMPA, Estrada Dona Castorina, 110, Rio de Janeiro, RJ, 22460-320, Brazil
^b Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil

ARTICLE INFO

Article history: Received 17 April 2014 Accepted 28 March 2015 Available online 10 April 2015 Communicated by C. De Lellis

MSC: primary 35B40, 35B35 secondary 35L65, 35K55

Keywords: Two-scale Young measures Homogenization Algebra with mean value Stefan problem

ABSTRACT

We address the deterministic homogenization, in the general context of ergodic algebras, of a doubly nonlinear problem which generalizes the well known Stefan model, and includes the classical porous medium equation. It may be represented by the differential inclusion, for a real-valued function u(x, t),

$$\begin{split} &\frac{\partial}{\partial t}\partial_u \Psi(x/\varepsilon,x,u) \\ &- \nabla_x \cdot \nabla_\eta \psi(x/\varepsilon,x,t,u,\nabla u) \ni f(x/\varepsilon,x,t,u), \end{split}$$

on a bounded domain $\Omega \subseteq \mathbb{R}^n$, $t \in (0,T)$, together with initial-boundary conditions, where $\Psi(z, x, \cdot)$ is strictly convex and $\psi(z, x, t, u, \cdot)$ is a C^1 convex function, both with quadratic growth, satisfying some additional technical hypotheses. As functions of the oscillatory variable, $\Psi(\cdot, x, u), \psi(\cdot, x, t, u, \eta)$ and $f(\cdot, x, t, u)$ belong to the generalized Besicovitch space \mathcal{B}^2 associated with an arbitrary ergodic algebra \mathcal{A} . The periodic case was addressed by Visintin (2007), based on the two-scale convergence technique. Visintin's analysis for the periodic case relies heavily on the possibility of reducing two-scale convergence to the usual L^2 convergence in the Cartesian product $\Pi \times \mathbb{R}^n$, where Π is the periodic cell. This reduction is no longer possible in the case of a general ergodic algebra. To overcome this difficulty, we make essential use of the concept

* Corresponding author.

E-mail addresses: hermano@impa.br (H. Frid), jean@im.ufrj.br (J. Silva), henrique@im.ufrj.br (H. Versieux).

 $\label{eq:http://dx.doi.org/10.1016/j.jfa.2015.03.021} 0022\mbox{-}1236/ \ensuremath{\odot}\ 2015$ Elsevier Inc. All rights reserved.

of two-scale Young measures for algebras with mean value, associated with bounded sequences in L^2 .

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with the homogenization of the following initialboundary value problem, on $\Omega \times (0, T)$, with $\Omega \subseteq \mathbb{R}^n$ a bounded open set,

$$\begin{aligned} \partial_t w_{\varepsilon} &- \nabla \cdot \alpha(\frac{x}{\varepsilon}, x, t, u_{\varepsilon}, \nabla u_{\varepsilon}) = f(\frac{x}{\varepsilon}, x, u_{\varepsilon}), \\ w_{\varepsilon}(x, t) &\in \partial \Psi(\frac{x}{\varepsilon}, x, u_{\varepsilon}), \quad \text{a.e. in } \Omega \times (0, T), \\ w_{\varepsilon}(x, 0) &= w_0(\frac{x}{\varepsilon}, x), \quad x \in \Omega, \\ u_{\varepsilon} &= 0, \quad \text{in } \partial \Omega \times (0, T). \end{aligned}$$
(1.1)

Here $\Psi(z, x, \cdot)$ is a strictly convex function for a.e. $(z, x) \in \mathbb{R}^n \times \Omega$, $\partial \Psi(z, x, v)$ denotes the subdifferential of Ψ with respect to v, and for all $v \in \mathbb{R}$, $\alpha(z, x, t, v, \cdot)$ is a monotone operator which is also assumed to satisfy a coercivity condition such as $\alpha(z, x, t, v, \eta) \cdot \eta \geq c_0 |\eta|^2 + h(x, t)$, with $c_0 > 0$ and $h \in L^1(\Omega \times (0, T))$, as usual. Also, $\alpha(z, x, t, v, \eta) = \nabla_\eta \psi(z, x, t, v, \eta)$, where $\psi(z, x, t, v, \cdot)$ is C^1 and convex in \mathbb{R}^n , for all $v \in \mathbb{R}$ and a.e. $(z, x, t) \in \mathbb{R}^n \times \Omega \times (0, T)$.

We address this homogenization problem in the context of a general ergodic algebra \mathcal{A} on \mathbb{R}^n . The latter is a concept introduced by Zhikov and Krivenko in [42], which largely extends the class of almost periodic functions, introduced by Bohr (see, e.g., [7]). More generally, it abstracts the properties satisfied by realizations of continuous functions in general compact topological spaces, endowed with a probability measure μ , under the action of a continuous dynamical system for which μ is invariant (*cf.* [3], and Theorem A.10 in Appendix A). It includes the almost periodic functions, introduced by Eberlein, which strictly include the Fourier–Stieltjes transforms (see, e.g., [17], and the discussion in Appendix A, below).

Let \mathcal{B}^2 denote the generalized Besicovitch space associated with the ergodic algebra \mathcal{A} , with topology provided by the semi-norm given as the mean value of the square of the absolute value (see Appendix A). We assume that, for all $v \in \mathbb{R}$, $\Psi(\cdot, \cdot, v) \in \mathcal{B}^2(\mathbb{R}^n; L(\Omega))$. Further, $\alpha(\cdot, \cdot, \cdot, v, \eta) \in \mathcal{B}^2(\mathbb{R}^n; L^2(\Omega \times (0, T))$ and $f(\cdot, \cdot, v) \in \mathcal{B}^2(\mathbb{R}^n; L^2(\Omega))$, for all $v \in \mathbb{R}$ and all $\eta \in \mathbb{R}^n$. Additional technical conditions are assumed over Ψ, ψ, α, f , see $(\Psi 1)-(\Psi 4)$, $(\psi 1)-(\psi 4)$, $(\alpha 1)-(\alpha 5)$, in Section 3, and $(\mathbf{f1})-(\mathbf{f3})$ in Section 4, below.

The corresponding case where \mathcal{A} is the algebra of the continuous periodic functions on \mathbb{R}^n was addressed in the pioneering paper by Visintin, [40], and the main point of the Download English Version:

https://daneshyari.com/en/article/6415101

Download Persian Version:

https://daneshyari.com/article/6415101

Daneshyari.com