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For any countable group, and also for any locally compact 
second countable, compactly generated topological group, 
G, we show the existence of a “universal” hypercyclic (i.e. 
topologically transitive) representation on a Hilbert space, 
in the sense that it simultaneously models every possible 
ergodic probability measure preserving free action of G.
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1. Introduction

A bounded linear operator S on a Banach space B is said to be hypercyclic if there 
are vectors v ∈ B such that the sequence {Snv}n≥0 is dense in B. It is called frequently 
hypercyclic if there are vectors v such that for any non-empty open set U ⊂ B one has

lim infN→∞
1
N

N∑
n=1

1U (Snv) > 0. (1.1)

One way to get such a property is for there to be a globally supported S-invariant prob-
ability measure μ on B such that the dynamical system (B, S, μ) is ergodic. In that case 
(1.1) will hold for μ-a.e. v by Birkhoff’s ergodic theorem. We shall call S universal if for 
every ergodic probability measure preserving dynamical system X = (X, B, μ, T ), there 
exists an S-invariant probability measure ν on B which is positive on every nonempty 
open subset of B and such that the dynamical systems X and (B, Borel(B), ν, S) are 
isomorphic. More generally, we have the following definition.

Definition 1.1. For a topological group G, a linear representation as operators on a Banach 
space B will be called universal if for every ergodic probability measure preserving free 
G-action X = (X, B, μ, {Tg}g∈G), there exists an {Sg}g∈G-invariant probability measure 
ν on B which is positive on every nonempty open subset of B and such that the G-actions 
X and (B, Borel(B), ν, {Sg}g∈G) are isomorphic.

In this work we show the existence of a universal representation on Hilbert space for 
the following classes of groups.

1. All countable discrete groups.
2. All locally compact, second countable, compactly generated groups.
3. Groups G of the form G = ∪∞

n=1Kn where K1 < K2 < · · · is an increasing sequence 
of compact open subgroups.

The precise statement for a countable infinite group is as follows:

Theorem 1.2. Let G be a countable infinite discrete group. There exists a faithful repre-
sentation of G, g �→ Sg, as a group of bounded linear operators on a separable Hilbert 
space H which is universal.
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