

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

A universal hypercyclic representation

Eli Glasner ^{a,*}, Benjamin Weiss ^b

^a Department of Mathematics, Tel Aviv University, Tel Aviv, Israel

ARTICLE INFO

Article history: Received 25 September 2014 Accepted 5 February 2015 Available online 25 February 2015 Communicated by G. Schechtman

MSC: 47A16 47A35 47A67 47D03 37A05 37A15 37A25 37A30

Keywords:

Frequently hypercyclic Universal linear system Ergodic system

Compactly generated groups

ABSTRACT

For any countable group, and also for any locally compact second countable, compactly generated topological group, G, we show the existence of a "universal" hypercyclic (i.e. topologically transitive) representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of G.

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	3479
2.	The finitely generated case	3481

E-mail addresses: glasner@math.tau.ac.il (E. Glasner), weiss@math.huji.ac.il (B. Weiss).

^b Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel

[☆] This research was supported by a grant of ISF 668/13.

^{*} Corresponding author.

3.	The general countable group case	3487
4.	The compactly generated group case	3488
5.	$G = \cup K_n$	3490
Refer	rences	3491

1. Introduction

A bounded linear operator S on a Banach space B is said to be *hypercyclic* if there are vectors $v \in B$ such that the sequence $\{S^n v\}_{n\geq 0}$ is dense in B. It is called *frequently hypercyclic* if there are vectors v such that for any non-empty open set $U \subset B$ one has

$$\lim \inf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{U}(S^{n}v) > 0.$$
 (1.1)

One way to get such a property is for there to be a globally supported S-invariant probability measure μ on B such that the dynamical system (B, S, μ) is ergodic. In that case (1.1) will hold for μ -a.e. v by Birkhoff's ergodic theorem. We shall call S universal if for every ergodic probability measure preserving dynamical system $\mathbf{X} = (X, \mathcal{B}, \mu, T)$, there exists an S-invariant probability measure ν on B which is positive on every nonempty open subset of B and such that the dynamical systems \mathbf{X} and $(B, Borel(B), \nu, S)$ are isomorphic. More generally, we have the following definition.

Definition 1.1. For a topological group G, a linear representation as operators on a Banach space B will be called universal if for every ergodic probability measure preserving free G-action $\mathbf{X} = (X, \mathcal{B}, \mu, \{T_g\}_{g \in G})$, there exists an $\{S_g\}_{g \in G}$ -invariant probability measure ν on B which is positive on every nonempty open subset of B and such that the G-actions \mathbf{X} and $(B, Borel(B), \nu, \{S_g\}_{g \in G})$ are isomorphic.

In this work we show the existence of a universal representation on Hilbert space for the following classes of groups.

- 1. All countable discrete groups.
- 2. All locally compact, second countable, compactly generated groups.
- 3. Groups G of the form $G = \bigcup_{n=1}^{\infty} K_n$ where $K_1 < K_2 < \cdots$ is an increasing sequence of compact open subgroups.

The precise statement for a countable infinite group is as follows:

Theorem 1.2. Let G be a countable infinite discrete group. There exists a faithful representation of G, $g \mapsto S_g$, as a group of bounded linear operators on a separable Hilbert space H which is universal.

Download English Version:

https://daneshyari.com/en/article/6415110

Download Persian Version:

https://daneshyari.com/article/6415110

<u>Daneshyari.com</u>