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Abstract

This paper gives a rigorous interpretation of a Feynman path integral on a Riemannian manifold M with
non-positive sectional curvature. An L? Riemannian metric G is given on the space of piecewise geodesic
paths Hp (M) adapted to the partition P of [0, 1], whence a finite-dimensional approximation of Wiener
measure is developed. It is proved that, as mesh(P) — 0, the approximate Wiener measure converges in

an L1 sense to the measure exp{— % /01 Scal(o (s))ds}dv(o) on the Wiener space W (M) with Wiener

measure v. This gives a possible prescription for the path integral representation of the quantized Hamil-
tonian, as well as yielding such a result for the natural geometric approximation schemes originating in
Andersson and Driver (1999) [3] and followed by Lim (2007) [34].
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1. Introduction

Let M be a d-dimensional Riemannian manifold with metric g, fixed point 0 € M, and Levi-
Civita covariant derivative V. For the remainder of this paper we will assume that the curvature
and its derivative are bounded on M. We will eventually also require that the sectional curvature
of M is non-positive, making sure to mention when we impose this restriction.

The Wiener space of M consists of the continuous paths starting at o and parameterized
on [0, 1],

W(M)={o e C([0,1] > M): 6(0) =0}. (1.1)

The Wiener measure associated to M is the unique probability measure v on W (M) such that,

/ flo)dv(o) = / F(xl,...,x,,)l_[P,-(dx,-) (1.2)
W (M) Mn i=1
whenever f has the form f(o) = F(o(s1),...,0(sp)) where P={0=sg <51 <--- <s, =1}

is a partition of [0, 1] and F is a bounded and measurable function. The measures P;(dx;) are
defined as P;(dx;) := pa,s(xi—1, x;) dx;, where ps(x, y) denotes the fundamental solution to the
heat equation on M, A;s =s; — s;_1, and dx; is the Riemannian volume form on M.

The purpose of this paper is to give a rigorous interpretation of a heuristic path integral on M

having the form,
1 ol
= / f(a(l))exp{/<—§||0/(s)||2+V(s))ds}Da (1.3)

W (M) 0

via a finite-dimensional approximation to Wiener measure. The “derivation” of Eq. (1.3) follows
from an application of Trotter’s product formula and a limiting argument from which Z arises
as a “normalization” constant that can either be interpreted as 0 or co, and Do is an infinite-
dimensional Lebesgue type measure which, in truth, does not exist. Moreover, V is a potential
and —% o’ (% + V (s) yields an energy term which is problematic since the weight of the space
W (M) lands on nowhere differentiable paths.

In spite of the need to give a rigorous interpretation, heuristic path integrals such as those in
Eq. (1.3) have proven themselves useful and arise often in physics literature. Particularly, one



Download English Version:

https://daneshyari.com/en/article/6415161

Download Persian Version:

https://daneshyari.com/article/6415161

Daneshyari.com


https://daneshyari.com/en/article/6415161
https://daneshyari.com/article/6415161
https://daneshyari.com

