

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Irrationally elliptic closed characteristics on compact convex hypersurfaces in \mathbf{R}^6

Wei Wang¹

Key Laboratory of Pure and Applied Mathematics, School of Mathematical Science, Peking University, Beijing 100871, Peoples Republic of China

ARTICLE INFO

Article history: Received 5 December 2013 Accepted 15 May 2014 Available online 27 May 2014 Communicated by H. Brezis

MSC: 58E05 37J45 37C75

Keywords: Compact convex hypersurfaces Closed characteristics Hamiltonian systems Morse theory

ABSTRACT

In this paper, let $\Sigma \subset \mathbf{R}^6$ be a compact convex hypersurface which carries exactly three geometrically distinct closed characteristics. We prove that at least two of them must be irrationally elliptic.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, let Σ be a fixed C^3 compact convex hypersurface in \mathbb{R}^{2n} , i.e., Σ is the boundary of a compact and strictly convex region U in \mathbb{R}^{2n} . We denote the set of

E-mail addresses: alexanderweiwang@gmail.com, wangwei@math.pku.edu.cn.

 $^{^1}$ Partially supported by National Natural Science Foundation of China No. 11222105, Foundation for the Author of National Excellent Doctoral Dissertation of PR China No. 201017.

all such hypersurfaces by $\mathcal{H}(2n)$. Without loss of generality, we suppose U contains the origin. We consider closed characteristics (τ, y) on Σ , which are solutions of the following problem

$$\begin{cases} \dot{y} = JN_{\Sigma}(y), \\ y(\tau) = y(0), \end{cases}$$
(1.1)

where $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, I_n is the identity matrix in \mathbf{R}^n , $\tau > 0$, $N_{\Sigma}(y)$ is the outward normal vector of Σ at y normalized by the condition $N_{\Sigma}(y) \cdot y = 1$. Here $a \cdot b$ denotes the standard inner product of $a, b \in \mathbf{R}^{2n}$. A closed characteristic (τ, y) is prime, if τ is the minimal period of y. Two closed characteristics (τ, y) and (σ, z) are geometrically distinct, if $y(\mathbf{R}) \neq z(\mathbf{R})$. We denote by $\mathcal{J}(\Sigma)$ and $\tilde{\mathcal{J}}(\Sigma)$ the set of all closed characteristics (τ, y) on Σ with τ being the minimal period of y and the set of all geometrically distinct ones respectively. Note that $\mathcal{J}(\Sigma) = \{\theta \cdot y \mid \theta \in S^1, y \text{ is prime}\}$, while $\tilde{\mathcal{J}}(\Sigma) = \mathcal{J}(\Sigma)/S^1$, where the natural S^1 -action is defined by $\theta \cdot y(t) = y(t + \tau\theta), \forall \theta \in S^1, t \in \mathbf{R}$.

Let $j : \mathbf{R}^{2n} \to \mathbf{R}$ be the gauge function of Σ , i.e., $j(\lambda x) = \lambda$ for $x \in \Sigma$ and $\lambda \ge 0$, then $j \in C^3(\mathbf{R}^{2n} \setminus \{0\}, \mathbf{R}) \cap C^0(\mathbf{R}^{2n}, \mathbf{R})$ and $\Sigma = j^{-1}(1)$. Fix a constant $\alpha \in (1, 2)$ and define the Hamiltonian function $H_{\alpha} : \mathbf{R}^{2n} \to [0, +\infty)$ by

$$H_{\alpha}(x) = j(x)^{\alpha}, \quad \forall x \in \mathbf{R}^{2n}.$$
(1.2)

Then $H_{\alpha} \in C^{3}(\mathbf{R}^{2n} \setminus \{0\}, \mathbf{R}) \cap C^{1}(\mathbf{R}^{2n}, \mathbf{R})$ is convex and $\Sigma = H_{\alpha}^{-1}(1)$. It is well known that the problem (1.1) is equivalent to the following given energy problem of the Hamiltonian system

$$\begin{cases} \dot{y}(t) = JH'_{\alpha}(y(t)), \quad H_{\alpha}(y(t)) = 1, \ \forall t \in \mathbf{R}, \\ y(\tau) = y(0). \end{cases}$$
(1.3)

Denote by $\mathcal{J}(\Sigma, \alpha)$ the set of all solutions (τ, y) of (1.3) where τ is the minimal period of y and by $\tilde{\mathcal{J}}(\Sigma, \alpha)$ the set of all geometrically distinct solutions of (1.3). As above, $\tilde{\mathcal{J}}(\Sigma, \alpha)$ is obtained from $\mathcal{J}(\Sigma, \alpha)$ by dividing the natural S^1 -action. Note that elements in $\mathcal{J}(\Sigma)$ and $\mathcal{J}(\Sigma, \alpha)$ are one to one correspondent to each other, similarly for $\tilde{\mathcal{J}}(\Sigma)$ and $\tilde{\mathcal{J}}(\Sigma, \alpha)$.

Let $(\tau, y) \in \mathcal{J}(\Sigma, \alpha)$. The fundamental solution $\gamma_y : [0, \tau] \to \operatorname{Sp}(2n)$ with $\gamma_y(0) = I_{2n}$ of the linearized Hamiltonian system

$$\dot{w}(t) = JH_{\alpha}''(y(t))w(t), \quad \forall t \in \mathbf{R},$$
(1.4)

is called the associate symplectic path of (τ, y) . The eigenvalues of $\gamma_y(\tau)$ are called Floquet multipliers of (τ, y) . By Proposition 1.6.13 of [7], the Floquet multipliers with their multiplicities of $(\tau, y) \in \mathcal{J}(\Sigma)$ do not depend on the particular choice of the Hamiltonian function in (1.3). For any $M \in \text{Sp}(2n)$, we define the *elliptic height* e(M) of M to be the total algebraic multiplicity of all eigenvalues of M on the unit circle Download English Version:

https://daneshyari.com/en/article/6415176

Download Persian Version:

https://daneshyari.com/article/6415176

Daneshyari.com