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1. Introduction and main results

In this paper, let X be a fixed C? compact convex hypersurface in R?", ie., X is
the boundary of a compact and strictly convex region U in R?". We denote the set of
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all such hypersurfaces by H(2n). Without loss of generality, we suppose U contains the
origin. We consider closed characteristics (7, y) on X, which are solutions of the following
problem

{y:JNZ(y)a (11)

y(7) = y(0),

I, 0
normal vector of X' at y normalized by the condition Nx(y)-y = 1. Here a-b denotes the

standard inner product of a,b € R?". A closed characteristic (7,y) is prime, if 7 is the
minimal period of y. Two closed characteristics (7, y) and (o, 2) are geometrically distinct,
if y(R) # z(R). We denote by J (%) and J(X) the set of all closed characteristics (7, y)
on Y with 7 being the minimal period of y and the set of all geometrically distinct ones
respectively. Note that J(X) = {6 -y | § € S!, y is prime}, while 5(2) = J(¥)/8s4,
where the natural S*-action is defined by @ - y(t) = y(t + 76), V0 € S*, t € R..

Let j : R*® — R be the gauge function of X, i.e., j(Az) = A for z € X and A > 0,
then j € C3(R*"\ {0},R)NC°(R?>",R) and X = j~!(1). Fix a constant « € (1,2) and
define the Hamiltonian function H, : R?" — [0, +0c0) by

where J = ( 0 71’”), I,, is the identity matrix in R™, 7 > 0, Nx(y) is the outward

H,(z) = j(x)*, Vz R (1.2)

Then H, € C3(R? \ {0},R) N C}(R?*",R) is convex and ¥ = H_ '(1). It is well
known that the problem (1.1) is equivalent to the following given energy problem of the

Hamiltonian system

(30 = THLO) Hal®) =1, <R (13)

y(7) = y(0).

Denote by J (X, a) the set of all solutions (7,y) of (1.3) where 7 is the minimal period
of y and by j(Z,a) the set of all geometrically distinct solutions of (1.3). As above,
J (X, ) is obtained from J (X, o) by dividing the natural S'-action. Note that elements
in J(X) and J(X, ) are one to one correspondent to each other, similarly for J(X)
and J (X, ).

Let (7,y) € J(X, a). The fundamental solution ~, : [0, 7] = Sp(2n) with v, (0) = I>,
of the linearized Hamiltonian system

w(t) = JH] (y(t))w(t), VteR, (1.4)

is called the associate symplectic path of (7,y). The eigenvalues of v, (7) are called Flo-
quet multipliers of (7,y). By Proposition 1.6.13 of [7], the Floquet multipliers with their
multiplicities of (7,y) € J(X) do not depend on the particular choice of the Hamil-
tonian function in (1.3). For any M € Sp(2n), we define the elliptic height e(M) of
M to be the total algebraic multiplicity of all eigenvalues of M on the unit circle
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