Polynomials in operator space theory

Andreas Defant, Dirk Wiesner

Institut of mathematics, Carl von Ossietzky Universität, D-26111, Oldenburg, Germany

A R T I C L E I N F O

Article history:

Received 13 July 2011
Accepted 7 February 2014
Available online 12 March 2014
Communicated by D. Voiculescu
Keywords:
Operator spaces
Completely bounded mappings
Matrices
Polynomials
Multilinear mappings
Tensor products

Abstract

The aim of this article is to start a metric theory of homogeneous polynomials in the category of operator spaces. For this purpose we take advantage of the basic fact that the space $P^{m}(E)$ of all m-homogeneous polynomials on a vector space E can be identified with the algebraic dual of the m-th symmetric tensor product $\otimes^{m, s} E$. Given an operator space V, we study several different types of completely bounded polynomials on V which form the operator space duals of $\otimes^{m, s} V$ endowed with related operator structures. Of special interest are what we call Haagerup, Kronecker, and Schur polynomials - polynomials associated with different types of matrix products.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A basis-free abstract theory of polynomials on vector spaces was developed from 1909 onwards by Fréchet, Gâteaux, Michal and others, and independently also by Banach at the same time as he invented the concept of normed spaces. Banach suggested the analysis of polynomials on normed spaces and had the intention of writing a book devoted to this non-linear part of his theory. Unfortunately he died in 1945 without realizing his project.

[^0]The definition of polynomials on vector spaces, which is now commonly accepted as the most elegant one, is a definition via multilinear mappings: A mapping p between two vector spaces E and F is called m-homogeneous polynomial, $p \in P^{m}(E ; F)$, if there exists an m-linear mapping $\varphi: E \times \cdots \times E \rightarrow F, \varphi \in L\left({ }^{m} E ; F\right)$, such that $\varphi(x, \ldots, x)=p(x)$ for all $x \in E$. Then there even is a unique symmetric m-linear mapping \check{p} which on all diagonal elements (x, \ldots, x) equals $p(x)$. This is a consequence of the so-called polarization formula which defines $\check{p}: E \times \cdots \times E \rightarrow F$ through

$$
\begin{equation*}
\check{p}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m!2^{m}} \sum_{\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}} \delta_{1} \cdots \delta_{m} p\left(\sum_{k=1}^{m} \delta_{k} x_{k}\right) . \tag{1}
\end{equation*}
$$

Symmetric m-linear mappings can be linearized by means of the m-fold symmetric tensor product. In order to understand this define the symmetric m-linear mapping

$$
\vee: E \times \cdots \times E \rightarrow \otimes^{m} E, \quad\left(x_{1}, \ldots, x_{m}\right) \mapsto \frac{1}{m!} \sum_{\eta \in \mathscr{S}_{m}} x_{\eta(1)} \otimes \cdots \otimes x_{\eta(m)}
$$

where the sum is taken over all possible permutations η on $\{1, \ldots, m\}$ and $\otimes^{m} E$ stands for the m-fold tensor product of E. The m-fold symmetric tensor product $\otimes^{m, s} E$ then by definition is the linear span of the range of \vee. As a consequence, for every symmetric m-linear mapping $\varphi: E \times \cdots \times E \rightarrow F$ there is a unique linear mapping $\varphi^{L, s}: \otimes^{m, s} E \rightarrow F$ such that $\varphi^{L, s} \circ \vee=\varphi$. One ends up with the following algebraic identification:

$$
\begin{align*}
P^{m}(E ; F) & =L\left(\otimes^{m, s} E ; F\right), \\
p & \longmapsto \check{p}^{L, s} \tag{2}
\end{align*}
$$

Let now E and F be two normed spaces. Then the continuous analog of the preceding equality is slightly more complicated. Let $\mathscr{P}^{m}(E ; F)$ be the linear space of all continuous m-homogeneous polynomials which together with

$$
\|p\|:=\sup _{\|x\|_{E} \leqslant 1}\|p(x)\|_{F}
$$

again forms a normed space (clearly, we have $\mathscr{P}^{1}(E ; F)=\mathscr{L}(E ; F)$, the space of all bounded linear operators). Inspired by Grothendieck's famous "Résumé de la théorie métrique des produits tensoriels topologiques" Ryan in [13] developed the concept of studying continuous m-homogeneous polynomials on normed spaces by analyzing symmetric tensor products. Define for $x \in \otimes^{m, s} E$ the projective symmetric tensor norm to be

$$
\begin{equation*}
\|x\|_{\pi_{s}}:=\inf \left\{\sum_{j}\left\|x_{j}\right\|^{m} \mid x=\sum_{j} \otimes^{m} x_{j}\right\} \tag{3}
\end{equation*}
$$

https://daneshyari.com/en/article/6415182

Download Persian Version:
https://daneshyari.com/article/6415182

Daneshyari.com

[^0]: E-mail address: defant@mathematik.uni-oldenburg.de (A. Defant).

