

Contents lists available at ScienceDirect

## Journal of Functional Analysis





Independence properties in subalgebras of ultraproduct  $II_1$  factors  $\stackrel{\circ}{\approx}$ 

### Sorin Popa

Math. Dept., UCLA, Los Angeles, CA 90095-1555, United States

#### ARTICLE INFO

Article history: Received 22 October 2013 Accepted 1 February 2014 Available online 20 February 2014 Communicated by S. Vaes

Keywords: II<sub>1</sub> factors Ultraproduct Independence

#### ABSTRACT

Let  $M_n$  be a sequence of finite factors with  $\dim(M_n) \to \infty$  and denote by  $\mathbf{M} = \prod_{\omega} M_n$  their ultraproduct over a free ultrafilter  $\omega$ . We prove that if  $\mathbf{Q} \subset \mathbf{M}$  is either an ultraproduct  $\mathbf{Q} = \prod_{\omega} Q_n$  of subalgebras  $Q_n \subset M_n$ , with  $Q_n \not\prec_{M_n} Q'_n \cap M_n$ ,  $\forall n$ , or the centralizer  $\mathbf{Q} = B' \cap \mathbf{M}$  of a separable amenable \*-subalgebra  $B \subset \mathbf{M}$ , then for any separable subspace  $X \subset \mathbf{M} \ominus (\mathbf{Q}' \cap \mathbf{M})$ , there exists a diffuse abelian von Neumann subalgebra in  $\mathbf{Q}$  which is free independent to X, relative to  $\mathbf{Q}' \cap \mathbf{M}$ . Some related independence properties for subalgebras in ultraproduct  $\Pi_1$  factors are also discussed.

© 2014 Elsevier Inc. All rights reserved.

#### 0. Introduction

We continue in this paper the investigation of independence properties in subalgebras of ultraproduct  $II_1$  factors, from [29,34]. The main result we prove along these lines is the following:

**0.1. Theorem.** Let  $M_n$  be a sequence of finite factors with dim  $M_n \to \infty$  and denote by  $\mathbf{M}$  the ultraproduct  $\Pi_1$  factor  $\prod_{\omega} M_n$ , over a free ultrafilter  $\omega$  on  $\mathbb{N}$ . Let  $\mathbf{Q} \subset \mathbf{M}$  be a von Neumann subalgebra satisfying one of the following:

 $<sup>^{\</sup>pm}$  Supported in part by NSF Grant DMS-1101718 and a Simons Fellowship.  $E\text{-}mail\ address:\ popa@math.ucla.edu}.$ 

- (a)  $\mathbf{Q} = \prod_{\omega} Q_n$ , for some von Neumann subalgebras  $Q_n \subset M_n$  satisfying the condition  $Q_n \not\prec_{M_n} Q'_n \cap M_n$ ,  $\forall n \text{ (in the sense of [32])};$
- (b)  $\mathbf{Q} = B' \cap \mathbf{M}$ , for some separable amenable von Neumann subalgebra  $B \subset \mathbf{M}$ .

Then given any separable subspace  $X \subset \mathbf{M} \ominus (\mathbf{Q}' \cap \mathbf{M})$ , there exists a diffuse abelian von Neumann subalgebra  $A \subset \mathbf{Q}$  such that A is free independent to X, relative to  $\mathbf{Q}' \cap \mathbf{M}$ , i.e.  $E_{\mathbf{Q}' \cap \mathbf{M}}(x_0 \prod_{i=1}^n a_i x_i) = 0$ , for all  $n \ge 1$ ,  $x_0, x_n \in X \cup \{1\}$ ,  $x_i \in X$ ,  $1 \le i \le n-1$ ,  $a_i \in A \ominus \mathbb{C}1$ ,  $1 \le i \le n$ .

Note that the particular case when  $Q_n \subset M_n$  are  $II_1$  factors with atomic relative commutant, for which one clearly has  $Q_n \not\prec_{M_n} Q'_n \cap M_n$ , recovers 2.1 in [29].

The conclusion in 0.1 above can alternatively be interpreted as follows: given any separable von Neumann subalgebra P of  $\mathbf{M}$  that makes a commuting square with  $\mathbf{Q}' \cap \mathbf{M}$  (in the sense of 1.2 in [25]; see Section 1.2 below for the definition) and we let  $B_1 = P \cap (\mathbf{Q}' \cap \mathbf{M})$ , there exists a separable von Neumann subalgebra  $B_0 \subset \mathbf{Q}$ , such that  $P \vee B_0 \simeq P *_{B_1} (B_1 \overline{\otimes} B_0)$  (amalgamated free product of finite von Neumann algebras over a common subalgebra, see [36,27]). Since in the case (b) of 0.1 we have  $\mathbf{Q}' \cap \mathbf{M} = B$  (see 2.1 below) and all embeddings into an ultraproduct  $\mathbf{H}_1$  factor  $\mathbf{M}$  of an amenable separable von Neumann algebra B are conjugate by unitaries in  $\mathbf{M}$ , Theorem 0.1 shows in particular that if two separable finite von Neumann algebras  $N_1$ ,  $N_2$  containing copies of B are embeddable into  $\mathbf{M}$ , then  $N_1 *_B N_2$  is embeddable into  $\mathbf{M}$  as well. Note that the case B atomic of this result already appears in [29], while the case B arbitrary but with  $\mathbf{M} = R^{\omega}$  was shown in [4]. More precisely, 0.1 implies the following strengthening of these results:

**0.2. Corollary.** Let  $\mathbf{M} = \prod_{\omega} M_n$  be an ultraproduct  $\Pi_1$  factor as in 0.1. Let  $N_i \subset \mathbf{M}$  be separable finite von Neumann subalgebras with amenable von Neumann subalgebras  $B_i \subset N_i$ , i = 1, 2, such that  $(B_1, \tau_{|B_1}) \simeq (B_2, \tau_{|B_2})$ . Then there exists a unitary element  $u \in \mathbf{M}$  so that  $uB_1u^* = B_2$  and so that, after identifying  $B = B_1 \simeq B_2$  this way, we have  $uN_1u^* \vee N_2 \simeq N_1 *_B N_2$ .

To prove Theorem 0.1, we first construct unitaries  $u \in \mathbf{Q}$  that are approximately n-independent with respect to given finite sets  $X \perp \mathbf{Q}' \cap \mathbf{M}$ . Taking larger and larger n, larger and larger finite sets X and better approximations, and combining with a diagonalization procedure, one can then get unitaries that are free independent to a given countable set, due to the ultraproduct framework.

The approximately independent unitary u is constructed by patching together incremental pieces of it, while controlling the trace of alternating words involving u and a given set X. This technique was initiated in [26], being then fully developed in [29], where it has been used to prove a particular case of 0.1(a). More recently, it has been used in [34] to establish existence of free independence in ultraproducts of maximal abelian \*-subalgebras (abbreviated hereafter MASA)  $A_n \subset M_n$  that are singular in the sense of [7] (i.e., any unitary element in  $M_n$  that normalizes  $A_n$  must lie in  $A_n$ ),

## Download English Version:

# https://daneshyari.com/en/article/6415196

Download Persian Version:

https://daneshyari.com/article/6415196

Daneshyari.com