

Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF Functional Analysis

Journal of Functional Analysis 266 (2014) 876-930

www.elsevier.com/locate/jfa

A local inequality for Hankel operators on the sphere and its application

Quanlei Fang a, Jingbo Xia b,*

Received 3 March 2013; accepted 1 October 2013

Available online 22 October 2013

Communicated by D. Voiculescu

Abstract

Let $H^2(S)$ be the Hardy space on the unit sphere S in \mathbb{C}^n . We establish a local inequality for Hankel operators $H_f = (1-P)M_f|H^2(S)$. As an application of this local inequality, we characterize the membership of H_f in the Lorentz-like ideal \mathcal{C}_p^+ , 2n . © 2013 Elsevier Inc. All rights reserved.

Keywords: Hankel operator; Local inequality; Norm ideal

1. Introduction

Throughout the paper, let S denote the unit sphere $\{z \in \mathbb{C}^n : |z| = 1\}$ in \mathbb{C}^n . We assume that the complex dimension n is greater than or equal to 2. Let σ be the positive, regular Borel measure on S that is invariant under the orthogonal group O(2n), i.e., the group of isometries on $\mathbb{C}^n \cong \mathbb{R}^{2n}$ which fix 0. As usual, the measure σ is normalized in such a way that $\sigma(S) = 1$.

Recall that the Hardy space $H^2(S)$ is the closure of $\mathbb{C}[z_1, \ldots, z_n]$ in $L^2(S, d\sigma)$. Let P be the orthogonal projection from $L^2(S, d\sigma)$ onto $H^2(S)$. Then the Hankel operator $H_f: H^2(S) \to L^2(S, d\sigma) \ominus H^2(S)$ is defined by the formula

$$H_f = (1 - P)M_f | H^2(S).$$

E-mail addresses: quanlei.fang@bcc.cuny.edu (Q. Fang), jxia@acsu.buffalo.edu (J. Xia).

a Department of Mathematics and Computer Science, Bronx Community College, CUNY, Bronx, NY 10453, United States

^b Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260, United States

^{*} Corresponding author.

There is a rich literature on various kinds of Hankel operators. See, e.g., [1,2,4–6,9–13,19]. This paper falls within the so-called "one-sided" theory of Hankel operators. We remind the reader that the term "one-sided" theory refers to the study of the Hankel operator H_f alone, whereas the simultaneous study of the pair H_f and $H_{\bar{f}}$ is called "two-sided" theory. By virtue of the identity

$$[M_f, P] = H_f - H_{\bar{f}}^*,$$

"two-sided" theory is equivalent to the study of the commutator $[M_f, P]$. By contrast, "one-sided" theory must deal with Hankel operators H_f that cannot be expressed in the form of $[M_g, P]$, $g \in L^2(S, d\sigma)$, which poses a much greater challenge.

Let us write **B** for the open unit ball $\{z \in \mathbb{C}^n : |z| < 1\}$ in \mathbb{C}^n . Furthermore, write

$$k_z(w) = \frac{(1 - |z|^2)^{n/2}}{(1 - \langle w, z \rangle)^n}, \quad |z| < 1, \ |w| \le 1.$$

Then k_z is the normalized reproducing kernel for the Hardy space $H^2(S)$. In the study of Hankel operators, an extremely important role is played by the scalar quantity

$$Var(f; z) = \| (f - \langle f k_z, k_z \rangle) k_z \|^2,$$

 $f \in L^2(S, d\sigma)$, $z \in \mathbf{B}$. One can think of Var(f; z) as the "variance" of f with respect to the probability measure $|k_z|^2 d\sigma$ on S, hence the notation.

It was shown in [16] that for $f \in L^2(S, d\sigma)$, the Hankel operator H_f is bounded if and only if $f - Pf \in BMO$, which is equivalent to the boundedness of the function $z \mapsto Var(f - Pf; z)$ on **B**. Also, H_f is compact if and only if $f - Pf \in VMO$ [16], which is equivalent to

$$\lim_{|z| \uparrow 1} \operatorname{Var}(f - Pf; z) = 0.$$

In [5] we proved that H_f belongs to the Schatten class C_p , 2n , if and only if

$$\int \operatorname{Var}^{p/2}(f - Pf; z) \, d\lambda(z) < \infty,$$

where $d\lambda$ is the standard Möbius-invariant measure on **B**.

What sets the "two-sided" theory of Hankel operators apart from the "one-sided" theory is just one thing: If one has both Hankel operators H_f and $H_{\bar{f}}$ available, then one has the local inequality

$$Var(f;z) \le \|H_f k_z\|^2 + \|H_{\bar{f}} k_z\|^2 \tag{1.1}$$

for every $z \in \mathbf{B}$ (see [15, (6.4)]). Most of the difficulties that are particular to the "one-sided" theory of Hankel operators can be traced to the single fact that there is nothing comparable to (1.1) in the "one-sided" theory. Nothing, that is, up to this point.

One of the motivations for this paper is to find a local inequality analogous to (1.1) in the context of the "one-sided" theory of Hankel operators. This we manage to do. As it turns out, our

Download English Version:

https://daneshyari.com/en/article/6415231

Download Persian Version:

https://daneshyari.com/article/6415231

<u>Daneshyari.com</u>